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The Matching and Proportional Laws are heuristic control policies that have found widespread
use in cybernetic models of biological systems. Within this context, the laws serve as optimization
surrogates for predicting the response of metabolic control circuits that modulate enzyme levels
and activities. The key result of the current contribution is to demonstrate clearly the optimality
properties of these laws and the assumptions that underlie their development. In doing so, we
arrive at generalized versions of the Matching and Proportional Laws that are shown to collapse
to the forms originally derived by Kompala et al. (Biotechnol. Bioeng.1986, 28, 1044-1055)
when certain simplifications are applied. As a further line of investigation, we show how Kompala
et al.’s cybernetic laws compare with alternative control policies in their ability to describe
diauxic growth behavior of microbial cultures. We find that Kompala et al.’s model describes
the experimental observations more accurately than other limiting-case models that are either
too aggressive or too passive in capturing the mixed-substrate growth rates and intermediate lag
periods. Monte Carlo analysis of computational growth experiments in which strains obeying
different regulatory policies directly compete for available nutrients reveals that the Matching
and Proportional Law policy does not maximize the average growth rate of the culture. However,
it allocates metabolic resources more frugally than other policies that outperform it and may be
more realistic in reflecting the cell’s true fitness-to-cost tradeoff as judged by its agreement
with experimental growth data.

1. Introduction
Biological systems are characterized by their ability to grow

and reproduce under diverse environmental conditions. This
resiliency is owed to a knack for regulating their metabolic
machinery in ways that ultimately promote survival in one way
or another. Such behavior has led to the frequent use of teleology
in explanations of biological phenomena, which has imposed a
simultaneously detracting influence on the “scientific” essence
of biology. Scientific laws are generally meant to spell the effect
of a cause rather than to sense the future in any way. Mayr (1),
in an eloquent support of the need for a grossly different
perspective of biological systems, recommends the term “tele-
onomy” as a more respectable substitute for teleology. The
implication of this suggestion is of course considerably deeper
than an act of rechristening, however. It proposes that during
evolution there has developed a genetic program providing
guidelines for optimal response of the organism to a wide range
of ecological pressures. This capacity for optimal behavior is
based on a record of its past experience together with progressive
development of a machinery for implementing such guidelines
and is chiefly acquired through the process of natural selection.
In the jargon of modern information technology, we might
regard this as the organism acquiring through its learning

experience both a software for survival strategies and the
hardware necessary for implementing them. Viewed from the
foregoing perspective, this “cybernetic” treatment of biological
systems is eminently within the realm of rational science.

The cybernetic modeling framework of Ramkrishna (2) builds
upon the idea that an organism’s nutritional goals are realized
entirely within the domain of chemical kinetics through judicious
utilization of metabolic capabilities. Metabolism, the term used
to denote the totality of chemical reactions in an organism, is
enabled by a vast collection of enzymes with highly specific
catalytic functions. Metabolic regulation is responsible for
controlling the amounts and activities of these enzymes. The
rates (or fluxes) of metabolic reactions are thus subject to
rigorous control aimed at protecting the interests of the organism.
It is essential that any valid treatment of biochemical reaction
systems is able to incorporate the effects of metabolic regulation
for it to be an effective scientific endeavor. Furthermore, in view
of the essentially speculative nature of the goals of regulation,
the need for a rational methodology that can be progressively
refined through experimental observation cannot be overem-
phasized.

The strategic response of an organism to its environment is
enacted by regulatory programs in which heuristics play a focal
role. We use the term “heuristics” to connote a set of rules that
a system, capable of learning, has acquired through extended
experience. Further, we deem the mathematical representation
of these heuristics to be time-invariant, at least on a time scale
(much) smaller than that of evolution. This experience of the
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past is held as a tool for the organism’s envisioning and
fashioning of its future in the interest of survival. In mathemati-
cal terms, the heuristics serve as a basis for computing optimal
strategies. We assume that the concept of optimality is tied up
with the economic utilization of the organism’s internal
resources. It should then become apparent that the cybernetic
modeling approach has a potential role in extracting the
relationship between the metabolic function of an organism and
its genomic background. Although the issue of relating genotype
to phenotype has been the subject of intense recent interest, a
rational methodology for the same has been elusive.

The chief objective of this article is to revisit the cybernetic
modeling framework of Ramkrishna (2) from a fresh viewpoint.
The exercise is significant in elucidating the exact nature of
the optimality implied by previous cybernetic control laws. Two
optimal laws have appeared in the foregoing cybernetic model-
ing literature. The first of these, concerned with regulation of
enzyme synthesis, has been referred to as the Matching Law,
and the second, associated with control of enzyme activity, has
been termed the Proportional Law. Kompala et al. (3, 4) derived
these laws using relatively crude arguments, which we now
attempt to refine. Besides providing clarity, the current develop-
ment is prerequisite to the offshoot of generalizations leading
to new cybernetic laws or to extended applicability of the
existing laws. Moreover, this treatment enables a systematic
comparison of alternate control policies that result from differing
notions of optimality, thereby providing a context in which the
unique properties of the Matching and Proportional Laws can
be fully discerned and appreciated.

2. Background

Cybernetic modeling has been extensively applied over the
past 20+ years to analyze and predict the dynamics of biological
systems. It was the first modeling approach to emphasize the
implied optimal behavior that results from selection through
evolution and to substitute optimal control heuristics for a
detailed description of regulatory mechanisms. This is a core
virtue of the cybernetic modeling paradigm, since other ap-
proaches are severely hampered by their inability to describe
regulatory effects whenever the underlying mechanisms are
poorly understood. Even in cases where a great deal is known
about the native regulatory pathways, system disturbances
brought about by genetic and environmental perturbations can
routinely elicit unforeseen responses. Any model that takes a
purely mechanistic view of regulation will cope poorly with
incomplete regulatory information and will produce unreliable
predictions in situations where these missing details become
important. In fact, because such a model often lacks the inherent
robustness of the biological system it describes, it may fail
completely under conditions very different from those that it
was expressly built to handle. This will prevent the model from
being effectively deployed as a predictive tool to discover novel
phenotypes resulting from targeted manipulations.

Since cybernetic modeling was first introduced in the early
1980s, the notion of supplementing biological models with
optimization heuristics has become well established in the
literature, but its application has been largely restricted to steady-
state models. Flux Balance Analysis (FBA) is one such approach
that has met with considerable success in predicting experi-
mentally determined flux changes resulting from gene knockouts
or altered carbon source availability (reviewed in ref 5). FBA
relies upon linear programming to compute the steady-state flux

distribution that optimizes a postulated metabolic objective. Its
main advantage is that it does not require estimation of kinetic
parameters and therefore can be applied to genome-scale
metabolic networks. A significant shortcoming of FBA is that
because it invokes pseudo-steady-state approximations on
intracellular metabolites, it cannot be extended to analyze the
dynamics of intracellular processes. Hence, FBA models are
inadequate for probing into some of the more complex aspects
of metabolism, such as multistability, oscillatory behavior,
transient phenomena, and the effects of reaction reversibilities
or futile cycling. A second and more serious objection is that
the computed fluxes are decoupled from the intracellular
metabolite and enzyme levels, so there is no way to incorporate
the kinetic and regulatory effects of these molecules into an
FBA model. The same objections apply to Minimization of
Metabolic Adjustment (MOMA) (6) and Regulatory On/Off
Minimization (ROOM) (7), which are offshoots of FBA that
impose different types of objective functions and/or constraints
on the steady-state flux distributions.

Metabolic Control Analysis (MCA) represents a separate body
of theory that has greatly influenced the way metabolic
regulation is understood. MCA enables the systematic measure-
ment and interpretation of indices describing the control of
biochemical pathways (8, 9). These so-called control coefficients
reflect the sensitivities of the steady-state fluxes and metabolite
levels within the pathway to variations in parameters such as
enzyme levels or effector concentrations. MCA has become a
popular framework for discovery and analysis of metabolic
engineering strategies. However, it lacks the capability to predict
system behavior under conditions very far removed from the
steady state under which the control indices were derived. Since
metabolic engineering usually involves large perturbations to
the physiological state of the cell, it is doubtful that the control
coefficients alone can serve as reliable guides for designing
recombinant organisms.

In addition to steady-state modeling approaches, there has
been a handful of attempts to construct detailed kinetic models
of cellular metabolism. A few notable examples are found in
the work of Domach et al. (10) and Chassagnole et al. (11) to
modelE. coli metabolism and that of Rizzi et al. (12) to model
yeast. The difficulty in identifying suitable rate expressions,
estimating parameters, and accounting for regulation has limited
the scope of kinetic models to relatively small- to medium-
sized networks of well-studied biochemical reactions. Most
investigations are restricted to model strains of bacteria and yeast
for which the important kinetic and regulatory features are
thoroughly understood. Biochemical Systems Theory (BST) is
a kinetic modeling approach that attempts to reduce the burden
of model identification by using canonical power-law rate
expressions (13, 14). The major drawback of this approach,
however, is that all regulation must be captured in the power-
law exponents. As a result, identifying the regulatory structure
of the model boils down to a high-dimensional parameter
estimation problem, which can become quite challenging to
solve. Furthermore, the resulting parameter values can hardly
be considered to represent the system-level control policies of
the organism. Much like the MCA coefficients, they merely
reflect the local regulatory behavior in the neighborhood of the
physiological state for which they were determined. There is
no reason to assume that they should remain constant over a
large swath of phenotypic space.

The goal of cybernetic modeling is to bridge the gap between
steady-state approaches such as FBA, which have been suc-
cessful in describing metabolic regulation using optimization
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heuristics, and kinetic models that provide a more complete
picture of cellular dynamics and are amenable to a wider range
of analysis techniques. Unlike other dynamic modeling ap-
proaches, cybernetic modeling views regulation as a distinct
subprocess of the cell, separate from the underlying kinetic
properties of the biochemical network. In doing so, it attempts
to capture the systemic features of regulation, those that must
be present for the proper functioning of the system at large.
This shift in focus from the mechanistic to the systemic results
in improved model robustness and a greater range of model
applicability. However, it has prompted some authors to classify
cybernetic modeling as a “black box” approach. This is a
completely unwarranted characterization since cybernetic control
laws can be readily extended to detailed models of arbitrary
size and complexity, as evidenced in the fairly elaborate model
of E. coli metabolism presented by Varner (15). In reality, the
network structure and kinetic expressions can be made as
sophisticated as desired, and cybernetic controls can still be
applied to enhance model robustness and improve the reliability
of predictions. Like other dynamic models, however, the main
difficulty in constructing cybernetic models lies in the formula-
tion of kinetic expressions and the estimation of rate parameters.
Therefore, cybernetic models should not be expanded indis-
criminately but instead should be tailored to the problem at hand,
taking into account the amount of data available for model
identification and validation.

3. Matching Law

3.1. An Optimal Control Problem. Let x represent the state
vector of the metabolic system of interest. The metabolic state
is described by the vector of metabolite concentrationsy, the
vector of enzyme levelse and the biomass concentrationc, so
it is convenient to partitionx into

The dimension ofy is denotedNY, and the dimension ofe is
likewise denotedNE. Therefore, the dimension ofx is NX ) NY

+ NE + 1.
The system is subject to regulatory control inputs enacted at

the transcriptional and translational levels that determine the
enzyme synthesis rates. We account for these inputs by
introducing the control vectoru, which specifies how transcrip-
tional and translational resources are to be allocated among the
various enzyme synthesis alternatives. More specifically, we
assume that there exists a single key resource that limits the
rate of enzyme synthesis, andui represents the fraction of this
resource earmarked for enzymeEi (16). Ignoring other possible
regulatory inputs and system dependencies, the time evolution
of this dynamical system is described by the differential equation
model

The organism is presumed to regulateu in such a way that
its metabolic performance indexJ is maximized, thus leading
to optimal allocation of metabolic resources. Hence, we can
view the organism’s regulatory machinery as an analog com-
puter that has evolved heuristic strategies for solving the optimal
control problem

From a modeling standpoint, our aim is to approximate the
solution of eq 3 using a digital computer and thereby provide
a system-level approach for predicting and analyzing the
dynamics of metabolic regulation.

Before venturing further, there are a few philosophical
concerns that warrant discussion. First, there is the problem of
identifying a suitable performance index for the system of
interest. The “true” performance index is, of course, unknowable
to the modeler because it is a consequence of the evolutionary
history of the organism. Therefore, some guesswork is implicit
in our eventual choice ofJ. Despite this apparent ill-posedness,
we are confined in our choice to functionals that (1) are
consistent with a general understanding of evolutionary biology
and reflect the organism’s basic requirements for growth and
survival and (2) are amenable to mathematical analysis. A
second concern lies in the fact that even if we possess the “true”
form of J, the problem of rigorously computing the optimal
control in eq 3 requires numerical solution of a two-point
boundary value problem. Such an approach is conceptually
difficult and computationally expensive, which undermines our
minimalist intentions for seeking out a cybernetic representation
of regulatory mechanisms in the first place. The most tractable
instance of eq 3 results when the performance index is quadratic
in the control variable and the state equation is linear, so it is
to our distinct advantage if we can re-express the relevant control
problem in this form.

In light of the preceding discussion, we choose to simplify
eq 3 by first assuming that regulatory decisions are made at
each instant based on the projected system response over a
(short) time interval of length∆t. We will refer to this time
interval as the system’s planning window. We further assume
that the system response at timet + τ whereτ ∈ [0, ∆t] can be
approximated by linearizing eq 2 about the current statex(t)
and the reference control inputu° to give

It has proven useful to associate the reference input with the
unregulated state of the system, e.g.,u°i ) 1/NE ∀i, but this
choice does not directly impact the present development and
will not concern us here. Ultimately, it is left to the interpretation
of the modeler. Note, however, that all cybernetic models
examined to date have been linear in the control inputs, and so
the matrixB would not be influenced by the choice ofu°-
only A is affected. It should also be pointed out that linearizing
aboutu(t) is problematic becauseu(0) would then need to be
specified along with the initial conditions, but the initial values
of the control variables are generally unknown. We avoid this
unnecessary complication by selecting a constantu° about which
to linearize the system.

x ) [yec ] (1)

x3 ) f(x, u) (2)

maxJ

s.t. x3 ) f(x, u)
(3)

∆x3 ) A∆x + B∆u + f(x(t), u°)

A ) ∂f
∂x

(x(t), u°), B ) ∂f
∂u

(x(t), u°)

∆x(t + τ) ) x(t + τ) - x(t) (4)

∆x3 ) d
dτ

∆x

∆u(t + τ) ) u(t + τ) - u°
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Next, we model the change in performance index over the
time interval [t, t + ∆t] as

where the functionφ(x) represents the metabolic objective of
the system andσ is a parameter that scales the cost associated
with resource investment. If we examine the two terms that
comprise∆J separately, the first represents the accrued benefit
that is derived from resources invested during the planning
window, and the second represents the cost or penalty ascribed
to these investments. The form of eq 5 is chosen to reflect the
microeconomic principle of diminishing marginal utility per unit
of resource input. The quadratic penalty term ensures that the
per-unit cost of resource increases as its rate of consumption
increases, which is dictated by the Laws of Supply and Demand.
Taken as a whole, this performance index captures the inherent
tradeoff that is required to meet nutritional requirements while
simultaneously conserving scarce internal resources.

Instead of solving the full optimal control problem of eq 3
over the time course of the simulation, we now endeavor to
compute the trajectoryu(t) as the solution to a sequence of linear
quadratic regulator (LQR) problems of the form

The LQR problem is solved at each time instant to determine
the optimal open-loop control over the planning window
[t, t + ∆t]. The prescribed control action is injected at timet,
which advances the system to the next time instant. From an
algorithmic standpoint, this is analogous to the procedure that
is implemented in receding horizon control of nonlinear
engineering systems (17). Borrowing from the language of
Kompala et al. (3), it is apparent that the control policy derived
in this manner maintains a short-term perspective, in that only
an assessment of the current statex(t) is required to compute
the system parametersA, B, and q upon which the optimal
control depends. No foreknowledge of future events is implied,
which is a major source of inconsistency in models that take a
long-term perspective, such as the one presented in Dhurjati et
al. (18).

The optimization problem summarized in eq 6 is readily
solved by appealing to classical approaches in the area of
optimal control theory (19). First, we define the Hamiltonian
function

whereλ is theNX-dimensional costate vector. The stationarity
condition gives

which can be rearranged to express the optimal control in terms
of the costate

Next, the costate equation

must be solved subject to the boundary condition

The solution to this linear differential equation is readily
obtained as

Finally, substitution of eq 12 into eq 9 gives the result

Since we are ultimately interested in determining the optimal
control input at the current timet, we setτ ) 0 in eq 13 to
arrive at a heuristic expression foru(t),

Let us now express this relationship in a more convenient form.
Denoting theith column ofB asbi, the “return-on-investment”
for resource allocated to theith enzyme is defined as

The return-on-investment,pi, reflects the expected metabolic
benefit derived from synthesis of enzymeEi, which subsequently
catalyzes reactionRi. In other words, it represents the extent to
which the metabolic objectiveφ(x) can be expected to improve
over the future time interval of length∆t due to control actions
implemented at the current timet. We can now re-expressui in
terms of the return-on-investment by substituting eq 15 into eq
14 to give the result

3.2. Constrained Inputs. In our attempt to focus on the
essential features of the Matching Law development, we have
thus far neglected to discuss the effects of input constraints on
the optimal control policy. However, it is apparent that the
constraintui g 0 must be applied to each element of the control
vector u, thereby restricting resource investments to be non-
negative. Furthermore, the total resource investment is bounded
by the resource availability, giving rise to a constraint of the
form ∑i)1

NR ui e 1, whereNR is the number of reactions in the
metabolic network. Pontryagin’s maximum principle can be used
to derive a more general form of the stationarity condition
(previously given by eq 8) that is applicable to constrained input
problems (20),

Here we have usedu* to denote the optimal control. For the
present case, the admissible region is described byD )
{u : ∑i)1

NR ui e 1, ui g 0}. BecauseH is a concave function of
u and becauseD is circumscribed by linear constraints, the
maximization in eq 17 represents a convex optimization
problem. Therefore, any solution that satisfies the Karush-
Kuhn-Tucker (KKT) conditions is a global optimum (21).

∆J ) qT∆x(t + ∆t) - σ
2 ∫t

t+∆t
uTu dτ

q ) ∂φ

∂x
(x(t)), ∆J ) J(t + ∆t) - J(t)

(5)

max∆J ) qT∆x(t + ∆t) - σ
2 ∫t

t+∆t
uTu dτ

s.t.∆x3 ) A∆x + B∆u + f(x(t), u°)
(6)

H(x, u, λ) ) - σ
2
uTu + λT[A∆x + B∆u + f(x(t), u°)] (7)

0 ) ∂H
∂u

) -σu + BTλ (8)

u ) 1
σ

BTλ (9)

-λ4 ) ∂H
∂x

) ATλ (10)

λ(t + ∆t) ) q (11)

λ(t + τ) ) eAT(∆t-τ)q, 0 e τ e ∆t (12)

u(t + τ) ) 1
σ

BTeAT(∆t-τ)q, 0 e τ e ∆t (13)

u(t) ) 1
σ

BTeAT∆tq (14)

pi(t) t bi
TeAT∆tq ) qTeA∆tbi (15)

ui )
pi

σ
(16)

u* ) arg max
u∈D

H(x, u, λ) (17)
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We can simplify eq 17 by removing those terms inH that do
not involveu to arrive at the result

Applying the KKT conditions to eq 18 gives the following set
of constraints that characterize the optimal control policy at time
t:

where η is the Lagrange multiplier associated with the total
resource constraint (eq 23) andνi is the Lagrange multiplier
associated with theith non-negativity constraint (eq 22). The
solution that simultaneously satisfies these conditions is ex-
pressed as

The Lagrange multiplierη describes the impact of the total
resource constraint (eq 23) on the optimal control. Its value must
satisfy the non-negativity constraintη g 0 and the equality
constraint that comes from substituting eq 26 into eq 21:

When σ > ∑i)1
NR max(pi, 0), this equation implies thatη ) 0

and the constraint expressed in eq 23 is inactive. Under such a
condition, the transcriptional resource is underutilized because
the fractional allocations sum to less than unity. If we consider
the extreme limit ofσ f ∞, the investment penalty is so severe
that all resource is withheld, resulting inu ) 0. On the other
hand, if σ < ∑i)1

NR max(pi, 0), we haveη > 0 and resource is
fully utilized. In the extreme case whenσ ) 0, the optimal
control is a Bang-Bang policy in which resource is allocated
exclusively to the reaction with the greatest return-on-invest-
ment. Neither of the extreme casesσ f ∞ or σ ) 0 represents
an economically efficient and robust system. If the cost
parameterσ is too large there will be wastage of resource, yet
if σ is too small the organism will fail to maintain a diverse set
of enzymes that are needed to respond to changing conditions,
the ecological equivalent of “putting all its eggs into a single
basket”. In order to strike a heuristic balance between these two
extremes, we postulate thatσ ≈ ∑i)1

NR max(pi, 0) and therefore
η ≈ 0. Equation 26 then simplifies to

which is the generalized form of the Matching Law. This result
contrasts with the original form derived by Kompala et al. (3),
which can be simply stated as

but the model considered in that work lacked the possibility of
negative returns-on-investment. The modified form expressed
in eq 28 should be used whenever some of the reactions in the
network have the potential to detract from the metabolic
objective and hence generate negative returns. The choice ofσ
that gives rise to eq 28 corresponds to the threshold value at
which the resource constraint eq 23 just becomes active. Except
in the singular case when none of the network reactions offer
a positive return-on-investment, the available resource is fully
utilized and the optimal control will always satisfy∑i)1

NR ui ) 1.
3.3. System Identification.In addition to the cost parameter

σ discussed in the previous section, there are a number of other
system parameters that must be identified before the optimal
control policy expressed in eqs 15 and 28 can be readily
computed. These include the state transition matrixA, the input
matrixB, the objective gradientq, and the length of the planning
window ∆t. The state transition matrixA and the input matrix
B are directly obtained by linearizingf in eq 2. It may be
desirable to simplify the expressions forA andB obtained in
this manner to produce expressions that are cheaper to evaluate
computationally or can be more easily manipulated to arrive at
analytical results. Since we are primarily interested in deriving
a heuristic control policy that is minimalist in nature, we should
openly embrace such simplifications when they lead to a
corresponding reduction in complexity. However, we must
simultaneously guard against oversimplifications that degrade
controller performance because the resulting system matrices
fail to adequately represent the underlying system dynamics.

Once a metabolic objective functionφ(x) has been identified
for the system of interest, the gradient vectorq ) ∂φ/∂x(x(t))
is readily computed at each time instant. It is beyond the scope
of the current discussion to outline specific strategies for
identifying the functional form ofφ, although several examples
can be found in the cybernetic modeling literature. Suffice it to
say that the objective functions applied in prior investigations
have been selected to reflect supposed evolutionary outcomes
or key physiological requirements of the organism. For instance,
early lumped models relied upon objective functions that
involved the biomass concentration or external substrate con-
centrations in such a way that growth rate (3) or substrate uptake
(22) was maximized. On the other hand, later work with
structured models attempted to develop objective functions that
directly characterized the material and energy requirements of
the organism (15, 23). In some cases, empirical knowledge of
how the flux distribution within the network responds to targeted
perturbations has been used to infer objective function candidates
(24). It should be noted, however, that there may exist multiple
objective functions that give rise to the same qualitative model
behavior and cannot be distinguished on the basis of the
available experimental data. In this case, any member of the

u* ) arg max
u∈D (- σ

2
uTu + λTBu) (18)

(19)

νiui ) 0 (20)

η(1 - ∑
i)1

NR

ui) ) 0 (21)

ui g 0 (22)

∑
i)1

NR

ui e 1 (23)

νi g 0 (24)

η g 0 (25)

ui ) max(pi - η
σ

, 0) (26)

η(1 -
1

σ
∑
i)1

NR

max(pi - η, 0)) ) 0 (27)

ui )
max(pi, 0)

∑
n)1

NR

max(pn, 0)

(28)

ui )
pi

∑
n)1

NR

pn

(29)
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class of similar objective functions can be employed to
approximate the observed regulatory effects, and further model
refinement must await the generation of discriminatory data sets.
There is a wide and diverse literature on optimal experiment
design and model discrimination, which describes methods for
selecting experimental inputs that lead to maximal discernment
between candidate models (25, 26). In addition, Burgard and
Maranas (27) present a novel approach for inferring and testing
metabolic objective functions using experimentally derived flux
distributions obtained, for example, from13C tracer studies.

The interval∆t represents the characteristic time scale over
which the regulatory circuit attempts to reckon the consequences
of its present control actions. There is no logical inconsistency
in proposing that organisms have evolved mechanisms to
optimize the expected future benefit of their current actions,
even when these actions are involuntary and occur without
conscious deliberation. For instance, whenever a cell initiates
transcription of a particular gene, a definite time must pass
before the nascent mRNA strand is completely transcribed, and
even more time must elapse before this message is subsequently
translated into a functional protein. Therefore, regulatory
programs must allocate transcriptional resources in a way that,
on average, will best meet the anticipated needs of the cell at
some later time, and the length of this anticipatory period is
symbolized by the parameter∆t. If this time scale is too short,
the cell may refuse to allocate available resources whenever
the resulting benefits are not reaped immediately. On the other
hand if the time scale is too long, system disturbances and other
unanticipated effects degrade the reliability of the control circuit
and result in poor regulatory performance. Obviously, an
appropriate value of∆t must be commensurate with the
characteristic times that are inherent in the system dynamics,
but in general there is a variety of disparate time scales
associated with eq 2 and with its linearized analogue eq 4. One
logical choice is to associate∆t with the minimum time scale
of the linearized system eq 4,

whereσ(A) is the spectrum ofA, viz., the set of all eigenvalues
of A. The scalarµ(A) is the logarithmic norm ofA and has
several interesting properties related to the growth of solutions
to ODEs (28). In particular,µ(A) g max{|Re(λ)| : λ ∈ σ(A)}.
The resulting value ofpi computed from eq 15 therefore reflects
the impact that regulatory actions have upon the fastest system
dynamics. This choice of∆t is not only appealing from a
theoretical standpoint, but it has computational advantages as
well. It may turn out thatA becomes temporarily unstable at
certain points in the system trajectory, viz., it could have
eigenvalues with positive real parts. When this occurs, the
evaluation of the exponential matrixeA∆t becomes difficult or
impossible for large values of∆t due to numerical overflow.
This problem cannot arise if the planning window is at least as
short as that described by eq 30.

In some instances, only the immediate consequences of the
injected control actions need to be considered when evaluating
u, and we can safely set∆t ) 0 without compromising the
integrity of the model. This leads to a drastic reduction in
computational effort, since eq 15 simplifies to

and we are no longer required to evaluateA or its associated
eigenvalues and matrix exponential. In fact, section 6 describes
how the returns-on-investment identified in the work of Kompala
et al. (3) can be considered a special case of eq 32. However,
Young (29) presents other situations in which setting∆t ) 0
leads to undesirable (and unstable) model behaviors. For
example, a linear sequence of reactions with short-time-scale
intermediates is destabilized by using eq 32 to compute returns-
on-investment, leading to unrealistic model behaviors such as
severe accumulation or depletion of intermediate metabolites.

4. Proportional Law

4.1. Revisiting the Optimal Control Problem. In contrast
to the Matching Law, which provides a heuristic policy for
describing the transcriptional controls contained in the vector
u, the Proportional Law addresses allosteric and covalent
regulatory controls that modulate enzyme activities. We there-
fore introduce the control vectorv and defineVi as the relative
activity of the enzyme catalyzing theith reaction. By “relative
activity” we mean the activity relative to the maximum possible
for a given amount of enzyme. Once again appealing to the
premise that biological control circuits have evolved optimal
strategies for regulating the available metabolic machinery, we
flesh out the Proportional Law statement by following essentially
the same development as in section 3. In doing so, we
momentarily ignore the effects of transcriptional and transla-
tional control and reinterpret the optimal control problem of eq
6 as

where we have simply substituted the controlv in place ofu.
Note that eq 33 implies that there is a quadratically increasing
cost associated with the activation of enzymes, which reflects
the notion of diminishing marginal returns as discussed in
section 3. Also note that theB matrix involved in eq 33
necessarily differs from that of the previous section because
the dependence ofx3 upon v is different from its dependence
uponu. While keeping this subtle yet important detail in mind,
it is apparent that the structure of eq 33 is identical to that of
eq 6, and the optimal control is therefore expressed as

where the form ofpi is given by eq 15.
4.2. Constrained Inputs.As before, we have neglected the

effects of input constraints in arriving at eq 34, and we will
now endeavor to remedy this apparent shortcoming. First, each
element of the control vectorv must satisfyVi g 0 to avoid
negative activities, which have no physical interpretation. An
upper bound constraint must also be applied to the elements of
v to avoid unrealistically large activities. In the seminal work
of Kompala et al. (3), a summation constraint similar to eq 23
was applied to the cyberneticv-variable, but this constraint was
later found to be inconsistent with experimental observations
(4). It was then modified to a simple bound constraintVi e 1
reflecting the fact that, by definition, the relative activity cannot
exceed unity. Applying Pontryagin’s maximum principle to the
Hamiltonian function that results from eq 33 gives rise to a
convex optimization problem. The KKT conditions describing
the global optimum are

∆t ) 1
µ(A)

(30)

µ(A) ) max{λ : λ ∈ σ ((A + AT)/2)} (31)

pi(t) ) qTbi (32)

max∆J ) qT∆x(t + ∆t) - σ
2 ∫t

t+∆t
vTv dτ

s.t.∆x3 ) A∆x + B∆v + f(x(t), v°)
(33)

Vi )
pi

σ
(34)
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whereηi and νi are the Lagrange multipliers associated with
the ith upper and lower bound constraints, respectively. The
solution that simultaneously satisfies these conditions is ex-
pressed as

To identify the cost parameterσ, we need to make one
additional assumption about the nature ofv. Following the work
of Kompala et al. (4), we stipulate that the reaction(s) with the
highest return-on-investment shall be fully activated, viz.,

Except in the singular case when all returns-on-investment are
zero or negative, eqs 41-43 together imply that (30)

Whenσ takes on the maximum value allowed by this inequality,
all reactions withpi < maxn(pn) have relative activitiesVi < 1.
Because the constraint given by eq 39 is inactive for these
reactions, the Lagrange multiplierηi must equal zero. We then
obtain the control law

Choosingσ to be less than the maximum value of maxn(pn)
leads to a situation where some reactions may become fully
activated even when their returns-on-investment are less than
the maximum available. In the limit ofσ ) 0, we reach a
condition in which all reactions with positive returns-on-
investment are fully activated. This obviously results in an
unrealistic control law because no preference is given to
reactions that yield higher metabolic benefits, a result that is
tantamount to removing all activity regulation from the network.
In light of these problems, we selectσ ) maxn(pn) and settle
upon eq 45 as the generalized statement of the Proportional Law.
This result can be simplified to the form used by Kompala et
al. (4),

whenever there is no possibility ofpi becoming less than zero.
Historically, the Matching and Proportional Laws have been

treated as distinct control policies, with separate justifications
given for each one. The current development reveals that both
are actually manifestations of the same optimal control law,

albeit with different input constraints applied. In fact, both are
forms of proportional control in that the resulting expressions
for ui and Vi are proportional to the associated return-on-
investmentpi. However, each expression is scaled by a different
normalization factor, which is determined by the value of the
cost parameterσ.

5. Tandem Application of Matching and Proportional
Laws

As we are ultimately interested in studying the simultaneous
effects of transcriptional/translational control and enzyme activ-
ity control upon the phenotype of the organism, we should
combine the results of sections 3 and 4 to arrive at a full
description of the regulatory dynamics. The ODE modelx3 )
f(x, u, v) is linearized to give

The optimal control problem that applies during the planning
window [t, t + ∆t] is formulated as

Stated in this form, the tasks of determining optimal policies
for u andv are decoupled from each other, and we can apply
the results of previous sections to compute the control inputs

where|pu
+|1 and |pv

+|∞ represent thel1 and l∞ vector norms,
respectively. The modified returns-on-investment that appear
in these equations are defined to reflect only positive contribu-
tions to the metabolic objective,

which allows eqs 49 and 50 to be expressed more compactly.
They are computed readily once the returns-on-investment

have been evaluated.

6. Reconciliation with Past Cybernetic Modeling
Approaches

The first cybernetic model to make use of the Matching and
Proportional Laws was that of Kompala et al. (4). This model
describes bacterial growth on mixtures of substitutable sub-

-σVi + pi ) ηi - νi (35)

νiVi ) 0 (36)

ηi(1 - Vi) ) 0 (37)

Vi g 0 (38)

Vi e 1 (39)

νi g 0 (40)

ηi g 0 (41)

Vi ) max(pi - ηi

σ
, 0) (42)

Vi ) 1, if pi ) max
n∈{1, ..., NR}

(pn) (43)

σ e max
n

(pn) (44)

Vi )
max(pi, 0)

maxn(pn)
(45)

Vi )
pi

maxn(pn)
(46)

∆x3 ) A∆x + Bu∆u + Bv∆v + f(x(t), u°, v°)

A ) ∂f
∂x

(x(t), u°, v°)

Bu ) ∂f
∂u

(x(t), u°, v°)

Bv ) ∂f
∂v

(x(t), u°, v°)

(47)

max∆J ) qT∆x(t + ∆t) - 1
2∫t

t+∆t
[σuu

Tu + σVv
Tv] dτ

s.t.∆x3 ) A∆x + Bu∆u + Bv∆v + f(x(t), u°, v°)
(48)

u )
pu

+

|pu
+|1

(49)

v )
pv

+

|pv
+|∞

(50)

pij
+ ) max(pij, 0), (i, j) ∈ {1, ...,NR} × {u, V} (51)

pj ) Bj
TeAT∆t

q, j ∈ {u, v} (52)
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strates, especially under conditions that give rise to diauxie. The
aim of our current discussion is to show that the expressions
for u andv employed in Kompala et al.’s model can result as
a special case of eqs 49-52, thereby establishing that the
treatment of section 5 is in fact a generalization and extension
of prior work in the cybernetic modeling area. Let us focus on
the simplest case of two substitutable substrates,S1 andS2, which
react to form biomassB according to the network in Figure
1.The state vector is

wheres ) [s1 s2]T ande ) [e1 e2]T. Assuming that the enzymes
are degraded according to a first-order process, the system
dynamics are modeled according to

where the “diag” operator forms a diagonal matrix from its
argument andâ ) [â1 â2]T contains the enzyme degradation
rate constants. The stoichiometric matrixScontains the biomass
yields of the two substrates,

The elements of the reaction rate vectorr and the enzyme
synthesis rate vectorrE are computed using standard kinetic
expressions:

The rateri represents the growth rate that would be derived
from consumption ofSi if the catabolic enzymeEi were fully
activated. The actual growth rateµ involves contributions from
each element ofr , weighted by the relative activity of the
corresponding enzyme:

To complete the model formulation, the following parameters
should be identified from experimental data: the biomass yields
Y1 andY2, the reaction rate constantsk1 andk2, the saturation
constantsK1 and K2, the enzyme synthesis rate constantsR1

andR2, and the enzyme degradation rate constantsâ1 andâ2.

The objective function chosen by Kompala et al. was inspired
by the observation that organisms undergoing diauxic growth
nearly always consume the substrate that gives the highest
growth rate in preference to other available substrates. Thus
the metabolic objective was postulated asφ(x) ) x5 ) c,
reflecting the hypothesis that regulatory control actions should
drive the system toward maximum growth. The authors then
relied upon qualitative arguments in concluding that the
corresponding expressions foru andv should be written as

Comparing these expressions with eqs 49-51 allows us to
conclude that the two results are equivalent ifpu ) pv ) r .
Our goal is now to determine whether these returns-on-
investment are consistent with eq 52.

First of all, we recognize that Kompala et al.’s approach does
not consider any indirect effects of the injected control inputs
(because the matrix exponential does not factor into the
evaluation of returns-on-investment). Only the instantaneous
effects of transcriptional/translational resource allocation and
enzyme activation are included in the computation ofpu and
pv, which implies setting∆t ) 0 in eq 52. Computing the
gradient ofφ givesq ) [0 0 0 0 1]T, and therefore eq 52 reduces
to

whereb5ij is the (5,i)-element of theBj matrix. The relevant
input matrix for the cyberneticv-variable is

Plugging the last row of this matrix into eq 63 implies thatpv

) rc, but the factor ofc will cancel from the numerator and
denominator of eq 62, allowing us to simply writepv ) r as
desired. Thus, we have reconciled Kompala et al.’s rendering
of the Proportional Law with the treatment of section 5.

The task of reconciling eq 61 with eq 49 is not as
straightforward, however. Because theu-variable only influences
the enzyme synthesis rates and does not directly impact the
reaction rates, the input matrix in this case becomes

There are no entries in row 5 ofBu, so we must conclude from
eq 63 thatpu ) 0 and consequentlyu ) 0. This is obviously
not the result we are seeking. In fact, this comes as a direct
result of setting ∆t ) 0 in arriving at eq 63. Because
transcriptional/translational resource investment does not directly
increase the biomass level, it is considered fruitless as a result
of the overly myopic planning window. However, our intuition
disagrees with this result, because we know that resource

Figure 1. Example network for growth on two substitutable substrates.

x )[sec] (53)

ds
dt

) S diag(v) rc (54)

de
dt

) diag(u)rE - diag(â)e - µe (55)

dc
dt

) µc (56)

S ) [- 1
Y1

0

0 - 1
Y2

] (57)

ri ) kiei

si

Ki + si
∀i ∈ {1, 2} (58)

rEi
) Ri

si

Ki + si
∀i ∈ {1, 2} (59)

µ ) vTr (60)

u ) r
|r|1

(61)

v ) r
|r|∞

(62)

pij ) b5ij, (i, j) ∈ {1, 2} × {u, V} (63)

Bv ) [-r1c/Y1 0
0 -r2c/Y2

-r1e1 -r2e1

-r1e2 -r2e2

r1c r2c
] (64)

Bu )[ 0 0
0 0
rE1 0

0 rE2

0 0
] (65)
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investment is required to synthesize enzymes, and these enzymes
are needed to catalyze biomass formation at times beyond the
present. To circumvent this problem, we pretend that the enzyme
levels are at quasi-steady state when writing the expression for
Bu. It is important to note that this quasi-steady-state assumption
does not change the balance equations that describe the system
dynamics but only affects the form ofBu used to compute the
return-on-investment vectorpu. Setting de/dt ) 0 in eq 55 and
solving for the steady-state value ofe leads to

Here we have defined the reference enzyme levele°i as
rEi/(âi + µ), which corresponds to the steady-state level of the
fully induced enzyme under the current conditions. Replacing
ei with ei

ss in the kinetic expression eq 58 leads to the following
expression forBu:

Assuming the reference control inputsV°1 andV°2 correspond to
the unregulated network state, viz.,V°i ) 1 ∀i, leads us to
conclude that the elements of the return-on-investment vector
pu should be written as

Although this provides a nontrivial expression foru, it is still
inconsistent with Kompala et al.’s resultpui ) ri. To remove
this discrepancy, we need to scale each return-on-investment
by the factorei/e°i. Introducing this additional factor in the
definition of pui causes the unwanted terms in eq 68 to cancel
off, leaving onlypu ) r .

What is the implication of scaling each return-on-investment
by ei/e°i when evaluating the Matching Law expression? From
a theoretical standpoint, this is equivalent to adjusting the penalty
term in eq 48 to produce the modified performance index:

where the weighting matrixR is given by

The transcriptional resource investment penalty in this updated
performance index is inversely proportional to the relative
enzyme level. Therefore, investment in enzymeEi is penalized
more severely whenei is small relative toe°i. As a result, the
kinetics of enzyme synthesis are made autocatalytic as a result
of the dependence ofui uponei. Narang et al. (31) have shown
that the autocatalytic nature of enzyme synthesis in Kompala
et al.’s model is primarily responsible for its ability to describe

diauxic behavior. Without this feature, the model would not
admit solutions characteristic of diauxie. As discussed in Narang
et al. (32), autocatalysis in the kinetics of gene expression gives
rise to global enzyme dynamics that are qualitatively similar to
those exhibited by species populations in the Lotka-Volterra
model of multispecies competition. In this context, the enzymes
play the role of species that compete for a common resource
pool. The enzyme with the highest return-on-investment is
induced to the greatest extent according to the Matching Law,
and this enzyme dominates the other competing enzymes. Unless
an environmental perturbation leads to a shift in dominance,
the less preferred enzymes are depleted by dilution and
degradation until they become virtually extinct.

Inclusion of theR weighting matrix in eq 69 confers an
inertial quality to the enzyme dynamics by promoting synthesis
of enzymes already at high levels over those at low levels. As
shown by Namjoshi and Ramkrishna (33), this inertia leads to
bistable switching behavior and hysteresis effects in models of
continuous cell cultures. Switching behavior of this sort is not
an unusual occurrence in biological systems. In fact, it arises
in a wide variety of contexts including cell signaling pathways,
regulation of cell-cycle events, cellular differentiation and, of
course, microbial sugar uptake by the phosphotransferase system
(34, 35). Observations of multiple steady states in hybridoma
cell cultures reported by Hu et al. (36) and Follstad et al. (37)
provide further examples of multistable metabolic systems that
derive their interesting features from nonlinear regulatory
phenomena. Thattai and Shraiman (38) suggest that a bistable
“winner-take-all” phenotype, qualitatively similar to the Match-
ing Law result, is more robust than other switching phenotypes
because it manifests over a broader range of parameter space.
This relative insensitivity to system parameters allows bistable
switches to resist disturbances that may arise from mutation or
stochastic variations inside the cell. These observations lend
support to the notion that the Matching and Proportional Laws,
although originally intended to describe a fairly isolated set of
behaviors attributed to diauxie, could in fact reflect a ubiquitous
motif of biological regulation.

7. Computational Assessment of Cybernetic
Control Laws

7.1. A Few Limiting-Case Policies.Several assumptions
were made in arriving at the Matching and Proportional Laws
of sections 3 and 4. These assumptions were expressly intended
to reflect the efficient and robust behavior observed in biological
systems while simultaneously providing simple, closed-form
control laws that avoid numerical inconveniences such as
discontinuities and philosophical inconsistencies such as non-
causality. However, it is important to recognize that these laws
represent but one possible route that evolution may have taken
to optimize regulatory performance. To establish additional
confidence in the Matching and Proportional Laws, it is
important to assess their predictions in comparison to alternative
control policies and to experimental growth data.

First, we need to introduce some nomenclature to help us
differentiate between the various control laws we now intend
to investigate. The control policy dictated by eqs 49 and 50
will henceforth be referred to as the MP policy, which stands
for Matching and Proportional Laws. Another possible control
law is the Indifferent (IN) policy, which results when each
enzyme is considered equally important andpu

+ ) pv
+ ) 1 is

substituted into eqs 49 and 50. The Zero Cost (ZC) policy is
obtained by settingσu ) σV ) 0 in eq 48, which results in the
discontinuous control law:

ei
ss)

rEi
ui

âi + µ
t e°i ui (66)

Bu )[-
r1V°1e°1c
e1Y1

0

0 -
r2V°2e°2c
e2Y2

rE1 0

0 rE2

r1V°1e°1c
e1

r2V°2e°2c
e2

] (67)

pui
) ri(e°i

ei
) (68)

∆J ) qT∆x(t + ∆t) - 1
2∫t

t+∆t
[σuu

TRu + σVv
Tv] dτ (69)

R ) [e°1/e1 0
0 e°2/e2] (70)
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The policy foru represents an extreme example of aggressive
control, in that all transcriptional and translational resources are
allocated exclusively to the enzyme with the highest return-on-
investment. However, the policy forv is wholly passive in that
any enzyme with a positive return-on-investment is fully
activated. The difference can be attributed to the less restrictive
upper bound constraint (eq 39) applied to the elements ofv in
contrast to the summation constraint (eq 23) that applies tou.
A related control law can be derived by forcing the elements
of v to satisfy a summation constraint analogous to eq 23 while
once again ignoring the input penalties. The resulting control
law for theu-variable is the same as in eq 71, but thev-variable
is described by

We refer to this policy as the Bang-Bang (BB) policy because
both theu and v control inputs exhibit discontinuous jumps
that typically result in a single dominant enzyme becoming fully
induced and activated at the expense of all others. Table 1
summarizes the expressions foru andv control variables implied
by the MP, IN, ZC, and BB policies.

We must also distinguish between different policies for
evaluatingpu and pv. The policy embodied by eq 52 will be
referred to as the Unweighted Temperate (UT) policy. Including
the multiplicative weighting factorei/e°i in the evaluation ofpui

results in the Weighted Temperate (WT) policy. Setting∆t )
0 in the UT or WT policy leads to Unweighted or Weighted
versions of the Greedy policy (UG or WG policies), respectively.
Table 2 summarizes the expressions used to compute the returns-
on-investmentpu and pv under each of the aforementioned
policies. In all cases, we evaluateBu after making the substitu-
tion e) ess(cf. eq 66) and de/dt ) 0 in f. This ensures continuity
of the present cybernetic laws with those introduced by Kompala
et al. (4). To fully specify the control policy implemented in a
particular cybernetic model, we need to declare both the policy
used to computepu andpv as well as the policy used to evaluate
u and v in terms of the computed returns-on-investment. For
instance, the policy used by Kompala et al. would be classified
as WG/MP, indicating a Weighted Greedy policy for computing
pu andpv coupled with a Matching and Proportional Law policy
for evaluatingu andv. As mentioned in section 6, a Weighted
policy is required to produce diauxie with an MP policy;
otherwise the MP policy will lead to stable coexistence of
enzymes.

7.2. Model of Kompala et al.A classic example of biological
control is found in the diauxic growth behavior ofE. coli and
other microbes. Originally discovered by Monod (39), diauxie
is a growth pattern that often arises when multiple growth-
supporting substrates are simultaneously present in the external
environment. Instead of consuming the available nutrients in
proportion to their abundance, the bacterial cells actively control
substrate uptake by regulating their internal repertoire of
enzymes. Culturing on a mixture of two substitutable substrates
produces two distinct exponential growth phases separated by
an intermediate lag phase in which growth is stagnant. The first
growth phase involves exclusive consumption of the preferred
substrate, which often confers a higher nutritional benefit to

the cells as evidenced by a faster growth rate. After the preferred
substrate has been completely exhausted, the cells undergo a
lag period during which they switch to synthesizing the enzymes
needed to metabolize the less preferred substrate. The second
growth phase promptly commences once these enzymes have
been amassed to sufficient levels. From a cybernetic viewpoint,
the diauxie phenomenon is the outward manifestation of a
biological control circuit that has evolved a capacity for optimal
decision-making, which in this case serves to optimize the
growth rate of the culture.

The ability to model the mixed-substrate growth dynamics
of microbial cultures for purposes of designing and optimizing
fermentation processes is of interest in the biotechnology
industry. Kompala et al. (4) employed an objective of growth
maximization within a cybernetic model ofKlebsiella oxytoca
to simulate diauxic growth on a number of substrate mixtures
involving glucose, xylose, arabinose, lactose and fructose sugars.
K. oxytocais an enteric, Gram-negative bacterium that, likeE.
coli, is able to metabolize a wide range of sugar monomers via
its phosphoenolpyruvate-dependent phosphotransferase (PTS)
system. UnlikeE. coli, however,K. oxytocacan efficiently
metabolize a wide variety of oligosaccharides derived from
incomplete digestion of lignocellulosic biomass including cel-
lobiose, cellotriose, xylobiose, xylotriose and arabinosides (40).
This feature makes recombinant strains ofKlebsiellaattractive
biocatalysts for the conversion of waste biomass into useful
products such as fuel ethanol. The significant outcome of
Kompala et al.’s study was the formulation of a cybernetic
model that could accurately portray the observed mixed-substrate
growth behavior ofK. oxytocabased solely on experimental
results obtained on single substrates. The model correctly
predicted the order in which the substrates would be consumed
and the overall growth dynamics of the culture using kinetic
parameters determined from single-substrate experiments, with-
out the need for additional model parameters to capture the
mixed-substrate interactions. This impressive predictive capabil-
ity flows directly out of the imposed objective of growth
maximization as mediated by the Matching and Proportional
Laws.

Kompala et al.’s model of growth on substitutable substrates
provides a natural context within which to evaluate opposing
control policies while avoiding unnecessary complexity. Despite
its apparent simplicity, this model is capable of producing a
rich assortment of possible dynamic behaviors depending upon
the control strategy applied. We focus on the particular case of
triauxic growth on glucose, xylose, and lactose because these
substrates exhibit a wide diversity of kinetic constants. Figure
2 depicts the topology of this simple biochemical network, and

ui ) {1, if pui
) max(pu)

0, otherwise
(71)

Vi ) {1, if pVi
> 0

0, otherwise
(72)

Vi ) {1, if pVi
) max(pv)

0, otherwise
(73)

Table 1. Policies for Computing Cybernetic Controlsa

MP IN ZC BB

u pu
+

|pu
+|1

1
NR

eq 71 eq 71

v pv
+

|pv
+|∞

1 eq 72 eq 73

a Refer to eq 51 for the definitions ofpu
+ andpv

+. NR denotes the number
of reactions in the network.

Table 2. Policies for Computing Returns-on-Investmenta

UT WT UG WG

pu Bu
TeAT∆tq R-1Bu

TeAT∆tq Bu
Tq R-1Bu

Tq
pv Bv

TeAT∆tq Bv
TeAT∆tq Bv

Tq Bv
Tq

a The weighting matrixR has the form given by eq 70.
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the relevant model equations are summarized in eqs 53-60
wheres ) [s1 s2 s3]T, e ) [e1 e2 e3]T, and

The parameter values for each substrate are listed in Table 3,
which are equivalent to those used by Kompala et al. It is
important to note that these values were derived from single
substrate growth data and were not adjusted to accommodate
mixed substrate growth situations. In the single-substrate case,
all valid control policies must collapse to giveu ) V ) 1,
indicating full activation and induction of the sole pathway for
substrate utilization. Therefore, the parameters should not be
expected to vary according to the choice of control policy
because all policies are equivalent under the conditions for which
the parameters were estimated. Consequently, there is no bias
introduced by using the same parameter set to evaluate each
different control policy.

7.3. Prediction of Growth Phenotype.As a first appraisal,
it is instructive to examine simulation results derived from the
various control policies side-by-side with comparison to ex-
perimental growth data. One feature that quickly stands out is
that the Temperate and Greedy return-on-investment policies
yield essentially identical results (not shown). This is because
the so-called indirect effects of enzyme activation and induction
are negligible under the chosen conditions. We use the term
“indirect” to describe any consequence of an injected control
move that is not realized immediately but instead manifests itself
gradually over time. For instance, the direct effect of activating
enzymeEi is to increase the rate of biomass production via
reaction Ri. However, this will necessarily lead to faster
depletion of substrateSi, which may result in lower overall
biomass production wheneverSi is present at levels near or
below the saturation constantKi. This reduction in growth rate
is considered an indirect effect because it is mediated through
the dynamics of substrate disappearance. The matrix exponential
appearing in eq 52 accounts explicitly for indirect effects in
the return-on-investment calculation, at least when they occur
on a time scale commensurate with∆t. In the current scenario,
the saturation constants for glucose and xylose are sufficiently
small and the substrate dynamics sufficiently slow that indirect
effects of the control inputs do not play a significant role in
determining their associated returns-on-investment. However,
this conclusion does not apply to more complex reaction
networks, especially those that involve sequences of reactions
with short-time-scale intermediates (29).

A second notable feature is that the Weighted and Unweighted
return-on-investment policies exhibit considerable disagreement.
As shown in Figure 3, the WG/MP policy produces almost an

exact trace of the experimental growth data obtained by
Kompala et al. (4), whereas the UG/MP policy is off by about
as much as the Indifferent policy. Both the UG/MP and IN
policies significantly underestimate the growth rate during the
first growth phase because they predict stable coexistence of
all three enzyme systemsE1-E3 rather than dominance ofE1

(cf. Figure 4). The UG/MP policy exhibits a moderate preference
for E1, which is intermediate between that of the IN and WG/
MP policies. Although the UG/MP policy allows the less
preferred enzymes to persist throughout the first exponential
phase, Figure 5 reveals that they are inhibited in the presence
of glucose and are rendered essentially useless. As a result, the
UG/MP policy predicts sequential uptake of sugars similar to
the WG/MP policy and in contrast to the simultaneous uptake
pattern predicted by the IN policy. Neither the IN nor UG/MP
policy predicts significant diauxic lags because the competition
for transcriptional/translational resource is not fierce enough to
drive the less preferred enzymes toward extinction. Therefore,
these enzymes are ready to come on-line as soon as the preferred
substrate is exhausted and their inhibition is lifted. The WG/
MP policy, on the other hand, regulates gene expression more
aggressively and provides a more accurate representation of
diauxie.

The UG/ZC and UG/BB policies both ignore the costs
inherent to enzyme induction and activation. As a result, they
take whatever action is necessary to maximize the instantaneous
growth rate of the culture, subject to the imposed input
constraints. Figure 6 shows that these control policies overes-
timate the observed growth rate during each phase of growth
and significantly underpredict the lengths of the diauxic lag
periods. Both the UG/ZC and UG/BB policies switch to
consuming xylose and lactose earlier than the WG/MP policy.
This premature switching is attributable to a lack of autocatalysis
in the enzyme synthesis kinetics. The switching dynamics are
further illustrated in Figures 7 and 8, which highlight the
discontinuous nature of the ZC and BB policies. One noticeable
feature is that the UG/BB policy always leaves a small amount
of the preferred substrate unconsumed when it switches to the
less preferred substrate and must eventually “double back” to
consume this remainder. The UG/ZC policy does not display
this feature because the accumulated enzymes remain active
even after the transcriptional switch is thrown.

Figure 2. Biochemical network representing growth on three substitut-
able substrates: glucose (S1), xylose (S2), and lactose (S3).

S ) [- 1
Y1

0 0

0 - 1
Y2

0

0 0 - 1
Y3

] (74)

Figure 3. Simulated growth curves for WG/MP, UG/MP, and IN
policies. Initial concentrations ares(0) ) [0.38 1.5 4.7]T g/L, e(0) )
[0.90 0.17 0.20]T, andc(0) ) 0.0026 g/L. Data forKlebsiella oxytoca
growth (×) on a mixture of glucose, xylose, and lactose are from
Kompala et al. (4).
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The salient conclusion that can be drawn from an inspection
of Figure 6 is thatKlebsiella has not evolved a strategy of
unbridled growth maximization that ignores the presence of
resource limitations. Although higher biomass productivity can
be achieved by following the discontinuous UG/ZC or UG/BB
strategies, we find that the less aggressive WG/MP policy does
a better job of describing the experimental observations. Indeed,
it is only logical to assume that the optimal policy should reflect
internal resource limitations, since they impose real constraints
on the performance of the system. Such reasoning flies in the
face of the FBA approach, which assumes that any stoichio-
metrically feasible flux distribution can be achieved regardless
of the physiological state of the cell. To the contrary, it is quite
implausible to suggest that reactions can be turned arbitrarily
on or off without concern for resource or enzyme availability.
This is a crucial distinction that should not be overlooked when
comparing the optimality criteria of cybernetic models to those
of FBA models and other constraint-based methods.

The WG/ZC and WG/BB control policies oftentimes produce
dynamics similar to the WG/MP policy. In many ways, the WG/
MP policy can be considered the continuous analogue of these
discontinuous policies. Figure 9 reveals the triauxic growth
curves to be nearly identical for all three policies, with the ZC
and BB laws giving similar growth rates and lags in comparison
to the MP law. However, the all-or-none nature of the BB and
ZC policies coupled with a Weighted policy for computing
returns-on-investment translates into a pronounced history effect
that can lead to erroneous predictions. For instance, growth on
a glucose/xylose mixture should evoke the same preference for
glucose regardless of how the cells were precultured. The WG/
MP policy correctly describes this growth behavior along with
the decreased intermediate lag that results from xylose precul-
turing. The WG/BB and WG/ZC policies, on the other hand,
predict that cells precultured on xylose will exhibit a reverse
preference for xylose over glucose. Consequently, they predict
an incorrect growth curve and an anomalous sequence of
substrate utilization as shown in Figure 10.

7.4. Competition Studies.In the previous section, we have
been concerned with assessing the isolated performance of a
variety of biological control laws. From an evolutionary

Figure 4. Cyberneticu-variables for WG/MP, UG/MP, and IN policies
under conditions described in Figure 3.

Table 3. Stoichiometric and Kinetic Parameters Used To Simulate
Triauxic Growth.

sugar i ki (h-1) Ki (g/L) Yi (gB/gSi) Ri (h-1) âi (h-1)

glucose 1 1.08 0.01 0.52 1.13 0.05
xylose 2 0.82 0.2 0.5 0.87 0.05
lactose 3 0.95 4.5 0.45 1.00 0.05

Figure 5. CyberneticV-variables for WG/MP, UG/MP, and IN policies
under conditions described in Figure 3.

Figure 6. Simulated growth curves for WG/MP, UG/BB, and UG/ZC
policies. Initial concentrations ares(0) ) [0.38 1.5 4.7]T g/L, e(0) )
[0.90 0.17 0.20]T, andc(0) ) 0.0026 g/L. Data forKlebsiella oxytoca
growth (×) on a mixture of glucose, xylose, and lactose are from
Kompala et al. (4).

Figure 7. Cyberneticu-variables for WG/MP, UG/BB, and UG/ZC
policies under conditions described in Figure 6.
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standpoint, a more interesting line of questioning surrounds the
outcome of direct competition between microbial species that
implement opposing regulatory strategies. We now wish to apply
the mixed substrate growth models of section 7.3 to describe
competition among communities of differentially regulated
species rather than pure cultures in isolation. The model
equations are identical, except that the substrate balance equation
must account for the specific uptake of each bacterial species
present in the culture. As a first example, let us investigate the
competition between the various control policies when the
culture is provided a mixture of glucose, xylose and lactose.
Using the same initial enzyme concentrations as in Figure 3
while setting the initial substrate levels tosi(0) ) 10 g/L ∀i
and the initial biomass levels toci(0) ) 10-3 g/L ∀i gives the
growth curves of Figure 11. The UG/ZC policy results in the
highest species abundance throughout the course of the batch,
with the UG/BB, WG/ZC, WG/BB, and WG/MP species not
far behind. The less aggressive IN and UG/MP policies give
slower growth and are ultimately dominated by the other
policies. The increased growth rates provided by the best
performing policies do not come without a price, however. By
examining the cumulative input penalties associated with the
weighting matrix of eq 70, we find that the more aggressive
policies accrue markedly higher enzyme synthesis penalties over
the course of the batch (cf. Figure 12). Overall, the analysis
suggests exactly what our intuition could have already told us:
that increased growth rate comes at the expense of placing an
increased strain on internal resources.

However, the story does not end there. The foregoing analysis
presupposes a single set of initial conditions that determine the
substrate, enzyme, and species levels at the start of the batch.
In their native habitats, however, microbes face continually
changing environmental conditions, and their regulatory pro-
grams must be sufficiently robust and flexible to ensure survival
across the entire ecological landscape. For instance, the intestinal
flora of humans contains a diverse community of microbes
whose dietary regimens are set by the feeding preferences of
their hosts. This means that their metabolic machinery must
retool every few hours in response to a new influx of food. To
test the robustness of each policy defined in section 7.1, Monte
Carlo simulations were performed by repeatedly integrating the
batch growth equations for many different realizations ofs(0)
and e(0). The initial substrate combination for each trial was

Figure 8. CyberneticV-variables for WG/MP, UG/BB, and UG/ZC
policies under conditions described in Figure 6.

Figure 9. Simulated growth curves for WG/MP, WG/BB, and WG/
ZC policies. Initial concentrations ares(0) ) [0.38 1.5 4.7]T g/L, e(0)
) [0.90 0.17 0.20]T, andc(0) ) 0.0026 g/L. Data forKlebsiella oxytoca
growth (×) on a mixture of glucose, xylose, and lactose are from
Kompala et al. (4).

Figure 10. Simulated growth curves for WG/MP, WG/BB, and WG/ZC policies for glucose/xylose mixture with (a) glucose or (b) xylose preculturing.
Initial conditions following glucose preculturing ares(0) ) [0.47 3.1]T g/L, e(0) ) [0.90 0.18]T, andc(0) ) 0.004 g/L. Initial conditions following
xylose preculturing ares(0) ) [0.17 2.2]T g/L, e(0) ) [0.38 1.0]T, andc(0) ) 0.035 g/L. Data forKlebsiella oxytocagrowth (×) are from Kompala
et al. (4).
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chosen by randomly sampling from a uniform distribution within
the interval 0-10 g/L. The initial enzyme levels were similarly
chosen from the uniform distribution defined over [0, 1]. To
be clear, each element of thes(0) ande(0) vectors was set to a
different realization from this sampling process, so that each
element was uniquely determined, but the different species were
assigned the same values ofe(0) andc(0).

Figure 13 summarizes the results from 1000 trials of
competitive growth in a box and whisker plot. The end-of-batch
fractional abundance of each species is computed by dividing
its final biomass concentration by the total amount of biomass
present. As Figure 13 shows, the UG/ZC policy gives the best
average-case performance followed by the UG/BB policy. The
WG/MP policy outperforms the WG/BB, UG/MP, and IN
policies on average but does not fare so well against the more
aggressive UG/ZC, UG/BB, and WG/ZC policies. It is also
interesting to note that the WG/MP, UG/MP, and IN policies
are less sensitive to the choice of initial conditions as revealed
by their small interquartile ranges. On the other hand, the WG/
BB and WG/ZC policies are highly sensitive to the initial
conditions and exhibit very poor worst-case performance.

Apparently, the Monte Carlo results depict a tradeoff between
fitness and cost. The more aggressive policies provide faster
growth, while the less aggressive policies limit the penalties
associated with enzyme synthesis and activation. How can we
go about determining which policies are most efficient? This
question is difficult to answer a priori because it requires that
we establish suitable metrics for the availability of transcriptional
and translational resources inside the cell and also for the cell’s
ability to simultaneously activate multiple competing pathways.
From an optimality standpoint, such factors influence the
weightings that appear in the system performance index and
determine how severely regulatory control actions should be
penalized. Of course, we can always compare simulation results
produced by the various control policies with experimental
growth data to discover which policies best reflect the observa-
tions, as we have already discussed in the previous section.
However, are there any conclusions that can be drawn about
the relative efficiencies of these control laws apart from their
ability to describe experimental results? One possible answer
is obtained by plotting some measure of system fitness versus
some measure of the investment needed to achieve that fitness,
as shown in Figure 14. Here we have used the fractional species
abundance as the fitness measure and a normalized investment

penaltyø defined for theith species by

as the measure of input cost. The batch timeT is defined as the
time when all substrates are depleted to within a tolerance of

The form of ø was chosen because it places both enzyme
synthesis and activation penalties on equal footing.

Figure 14 reveals that not all policies are equally efficient.
Those policies that lie to the upper-left of the plot return the
highest species abundance for a given amount of resource

Figure 11. Competitive growth of species obeying the WG/MP, UG/
MP, WG/BB, UG/BB, WG/ZC, UG/ZC, and IN policies on a glucose/
xylose/lactose mixture.

Figure 12. Cumulative enzyme synthesis penalties for the WG/MP,
UG/MP, WG/BB, UG/BB, WG/ZC, UG/ZC, and IN policies during
competitive growth on glucose, xylose, and lactose.

Figure 13. End-of-batch fractional abundance of each species averaged
over 1000 trials of competitive growth on glucose, xylose, and lactose.
The boxes have lines at the lower quartile, median, and upper quartile
values. The whiskers show the extent of the rest of the data. The mean
value for each policy is represented by an asterisk.
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investment. The solid curve connecting the UG/MP, WG/MP,
UG/BB, and UG/ZC data points represents the “efficient
frontier”. This is the locus of points for which no other policy
provides better fitness while simultaneously achieving a lower
value ofø. Although we cannot know a priori where the system
lies along this tradeoff curve without knowing the “true” system
performance index, it stands to reason that its evolution should
have converged to some point along the efficient frontier.
Otherwise, it would be possible to achieve improved fitness for
an equal or lesser cost. This analysis implies that the IN, WG/
BB, and WG/ZC policies are inefficient because they lie to the
lower-right of the efficient frontier. However, the remaining
policies are equally efficient in the sense that no other policy
achieves a better fitness with lower resource investment.

7.5. Further Empirical and Practical Considerations.
Kompala et al.’s original model predicts that batch growth on
mixed substrates will always result in diauxie. It should be noted,
however, that many instances of batch growth do not display
sequential uptake of substrates. The observed behavior generally
falls into one of three categories: (1) sequential growth pattern
independent of preculturing, (2) simultaneous growth pattern
independent of preculturing, or (3) growth pattern dependent
on preculturing (41). Sequential growth may be either diauxic
or biphasic, with the latter term denoting absence of an
intermediate lag period. Kompala et al. (4) has shown how
biphasic growth can be easily accommodated within the
cybernetic framework by assuming that the two competing
pathways are catalyzed by the same enzyme system. Later work
by Straight and Ramkrishna (42) and Ramakrishna et al. (43)
has shown that it is possible to describe all of the aforementioned
growth patterns ranging from simultaneous to sequential uptake
by augmenting the reaction network or by altering the cybernetic
objective functionφ. In the modular approach to cybernetic
modeling (44), one also has discretion in choosing which
enzymes should be placed in competition depending on the level
of interaction observed between parallel metabolic branches.
Therefore, these laws can indeed form the basis for a general
treatment of regulation that is adaptable to many different
metabolic scenarios.

In addition to the features already discussed, there are other
practical reasons for invoking the Matching and Proportional
Laws. One key advantage is that they are described by relatively

simple and well behaved functions. A discontinuous control
policy such as the ZC or BB policy, on the other hand, creates
many analytical and numerical problems. In situations where
the rates of two competing reactions are nearly equal, e.g., in a
chemostat under steady-state conditions, frequent discontinuous
switching leads to severe slowing and eventual failure of the
numerical integrator. This problem does not occur with the
Matching and Proportional Laws, which readily describe the
smooth transition from preferential uptake at high dilution rates
to simultaneous uptake at low dilution rates that is observed in
chemostat cultures (45). Furthermore, the application of tech-
niques such as bifurcation analysis or sensitivity analysis to
discontinuous models is complicated by the presence of non-
differentiable terms in the closed-loop system equations. All of
these reasons make a continuous control law such as the MP
policy preferable to a discontinuous law in practice.

8. Conclusion
The Matching and Proportional Laws are the central tenets

of cybernetic modeling. They have been successfully applied
to numerous modeling studies, ranging from lumped models of
diauxic growth to highly structured models of biochemical
networks. Until now, the optimality background of these laws
was partially shrouded due to lack of a rigorous mathematical
development leading to their derivation. The main contribution
of this article, therefore, is to establish how generalized versions
of the Matching and Proportional Laws are obtained as the
solution to a well-defined optimal control problem. Moreover,
the assumptions needed to reconcile these results with previous
treatments in the cybernetic modeling literature are fully
enumerated and discussed. These results are not only interesting
in their own right but have led to the outgrowth of a novel
cybernetic modeling approach that utilizes elementary mode
decomposition of biochemical networks to infer regulatory
interactions and resource competitions within the resulting
models (29). To maintain simplicity in the present exposition
and continuity with previous work, we have chosen to illustrate
the expanded Matching and Proportional Law treatment using
a lumped model of diauxic growth that does not require network
decomposition methods of this sort. A detailed description of
how the current results can be extended to more complex
networks is left to future publications. Suffice it to say, however,
that an optimal control problem similar to the one discussed in
section 5 is solved for each elementary flux mode to determine
local cybernetic control variables that maximize the composite
mode flux. These local controls are combined with global
cybernetic variables that determine the extent to which each
mode should be activated in order to best achieve the organism’s
nutritional objectives.

Computational results were presented that illustrate the
relative merits of several different control laws in describing
the growth dynamics of mixed-substrate bacterial cultures. The
WG/MP policy provides superior predictive capabilities in
comparison to the UG/MP and IN policies, which are too
passive, and the UG/BB and UG/ZC policies, which are too
aggressive. The WG/BB and WG/ZC policies give results
similar to the those of WG/MP policy in some cases but may
predict the wrong order of substrate preference in others. Monte
Carlo simulations designed to probe the response of each control
law under varying ecological conditions were also presented.
These results shed light on the robustness and efficiency
properties exhibited by each law when placed in direct competi-
tion with multiple opposing policies. Although some laws are
clearly less efficient than others, a handful of laws including
the WG/MP policy lie along an efficient frontier and are

Figure 14. Tradeoff between fitness and cost for the WG/MP ()),
UG/MP (/), WG/BB (×), UG/BB (0), WG/ZC (∆), UG/ZC (O), and
IN (b) policies. Results are averaged over 1000 trials of competitive
growth on glucose, xylose and lactose.
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equivalent from the standpoint that no other policy achieves a
better fitness with lower resource investment. However, empiri-
cal results suggest that the diauxic switching behavior of
Klebsiella oxytocahas not evolved toward a policy of unbridled
growth maximization but instead exhibits a tendency to weigh
the potential benefits of alternative control actions against the
costs required to implement those actions. The Matching and
Proportional Laws mimic this behavior by recognizing that
optimality is related to the economic utilization of scarce internal
resources, which cannot be liberally allocated without incurring
diminishing marginal returns.
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