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Abstract

We study a model of intelligence breakthroughs in a dynamic setting.

An intelligence breakthrough occurs when an actor secretly obtains the ca-

pability to observe the behavior of an opponent, and this capability can be

used to gain an advantage in conflict. We model this interaction as a game

of asymmetric information in which a “Spy,” is either able to observe the

actions of a “Target” or not. The model captures key tradeoffs of wartime

intelligence and espionage. If the target knows the spy is not observing,

they prefer to communicate honestly. But if the Target thinks the Spy may

be observing, then they are inclined to hedge their communications due to

concerns about the spy leveraging its knowledge. In equilibrium, a listening

Spy will always “bide its time” and induce the Target to communicate more

openly, before eventually exploiting that honesty.
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“The hardest part wasn’t returning his serve — it was not letting him know that

I knew this. I had to resist the temptation of reading his serve for the majority

of the match and choose the moment when I was gonna use that information on

a given point to execute a shot that would allow me to break the match open.” —

Andre Agassi

Secret intelligence is widely coveted. Whether in military conflict, cyberse-

curity, regulation, or even tennis, people want to have information about others

without their knowledge in order to get “one step ahead.” And for those who suc-

ceed, such intelligence provides critical advantages for anticipating how others will

behave and react. Accordingly, espionage and other forms of intelligence gathering

have attracted substantial attention and resources throughout human history.

Despite the clear appeal of having secret intelligence, however, there are murkier

incentives for using it. On one hand, there is obviously upside in exploiting it in

order to realize its potential. On the other hand, acting on it can erode its value

going forward, since others may grow suspicious and more cautious. Thus, the

possession of secret intelligence raises a dilemma: exploit it today but potentially

diminish its usefulness tomorrow, versus conceal it today but preserve its usefulness

tomorrow. Essentially, the more pressing decision for intelligence holders is not

whether to act on intelligence, but when to act on it. We aim to shed new light

on this fundamental tension.

We study the use of secret intelligence. Broadly, we probe how actors want to

exploit intelligence breakthroughs—i.e., secretly obtaining the capability to observe

others’ private behavior. Specifically, our main question asks: when to exploit an

intelligence breakthrough?

To do so, we analyze a game-theoretic model of a Target and Spy interacting

over time. In each period, Target privately observes information about its current

conditions and then takes an action. Meanwhile, the Spy may be secretly observing

the Target’s actions and, regardless, chooses how boldly to act towards Target. The

Spy wants to act boldly in the same direction of Target’s information. In contrast,

the Target wants to match its own conditions while misdirecting the Spy to act in

the wrong direction.

The model captures key tradeoffs of wartime intelligence and espionage. First,

the Target wants to match its conditions but is worried about whether the Spy
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can observe those actions, since it could use such informative behavior to infer the

underlying conditions. Second, the Spy wants to use its intelligence to act boldly

in the correct direction but that can make the Target more suspicious and then

act less sincerely in the future.

These tradeoffs combine to shape the dynamic incentives of both players. The

Spy has an incentive to feign ignorance in order to appear as though it has not

made an intelligence breakthrough. The longer Spy waits, Target grows more

confident that there has not been a breakthrough and therefore they are more

inclined to act boldly. In turn, a listening spy has increasingly strong incentives

to exploit its information.

In equilibrium, behavior is deliberately unpredictable. Spy will ‘bide its time’

before striking, so repeated rounds of no action do not mean that Spy is not

listening. Instead, in each period, Spy either (i) acts boldly and is ‘found out’ or

(ii) does not act and the Target gets less suspicious about Spy’s secret intel. In

turn, Target gets more likely to send truthful message. But consequently, acting

boldly grows more appealing for a listening spy.

Contributions to Related Literature

We contribute to theoretical understanding of secret intelligence and espionage.

In various settings, there is an important feedback between incentives to gather

secret intel and incentives to mitigate the fallout from being spied on. Essentially,

some actors may want to get information about what others know or what they

are planning to do but, in turn, that possibility can induce potential targets to

obfuscate their plans, behavior, or information (Solan and Yariv, 2004). Parsing

this feedback is important for understanding incentives for intelligence gathering.

In static settings, it shapes whether actors want to spy (Solan and Yariv, 2004).

We complement those insights by studying how these incentives unfold over time to

shape when actors want to act on their intelligence sources. Moreover, our results

shed light on whether actors want to set up a durable source of secret intelligence.

We probe the role of reputation in managing and exploiting a source of intel-

ligence over time. In many situations, reputation is an important consideration

because of how it can impact others’ behavior (Kreps and Wilson, 1982; Milgrom

and Roberts, 1982) Typically, those who are concerned about their reputation
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want to leverage it for some instrumental purpose (Morris, 2001). For instance,

firms may want to build reputations for quality in order to attract customers or

exploit them later on (Bar-Isaac, 2003; Bar-Isaac and Tadelis, 2008). Similarly,

advisors may want to build trust with their clients by acting responsibly, but their

incentives to exploit that credibility can impair their efforts to do so (Sobel, 1985;

Benabou and Laroque, 1992). In equilibrium, early trust-building typically pre-

cedes exploitation, which destroys trust thereafter.

We uncover some familiar dynamics of reputation and behavior, but in a new

setting. Rather than quality or credibility, we study a known adversary who may

have a source of secret intel and wants to conceal it. Here, the Spy sits on in-

formation for a while in order to appear ignorant, which induces the Target to

act on its information more openly and eventually increases Spy’s temptation to

exploit its intelligence enough that she acts on it, which thereafter destroys the il-

lusion of ignorance. Thus, we focus on the strategic aspects of bad reputations (Ely

and Välimäki, 2003) since Spy wants to avoid a certain reputation (for spying),

rather than seek a certain reputation (e.g., for quality or reliability). 1 Further-

more, reflecting our application, we analyze the evolution of reputation between

two long-lived players with two-sided asymmetric information. Specifically, each

player has a distinct information advantage over the other, since Target privately

observes the state of the world but does not know whether they are being spied

on.

We also contribute to theoretical understanding of monitoring.2 Broadly, we

trace the dynamics and consequences of uncertain monitoring in a prolonged and

adversarial relationship. Our setting features a strategic tension that is inherent in

monitoring: it can affect how others behave if they think they are being watched,

and that prospect can impact incentives to monitor and use any information obtain

by doing so. This tension shapes the ways that actors would optimally monitor

if they could commit (Tan, 2023) and how they do monitor if they cannot (e.g.,

1There are several other differences. For instance, in Sobel (1985) an advisor provides binary
information before the decision maker takes a continuous action. In contrast, here the Target
takes binary actions, the Spy takes continuous actions, their ‘correct’ actions can vary across time
and they have opposing preferences. And a technical difference is that we have infinite horizon
and no committed type.

2Strausz (2006) distinguishes monitoring (observing agent’s actions in real time) from auditing
(observing agent’s actions/performance afterwards).
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Graetz et al., 1986; Strausz, 1997). We study the latter and shed new light on how

dynamic reputation considerations impacts monitors over time. Others have stud-

ied incentives to build reputations for monitoring capacity Halac and Prat (2016);

Dilme and Garrett (2019) or quality (Marinovic and Szydlowski, 2022, 2023), ori-

ented towards understanding regulatory applications.3 In contrast, and motivated

by our interest in secret intelligence and espionage, our setting features uncer-

tainty about whether there is monitoring at all and thus emphasizes reputation for

monitoring.

Model

A Target T and Spy S interact over an infinite number of periods, t = 1, 2, .... S

can be one of two types, τS ∈ {L,N}, indicating whether S is listening (τS = L)

or not listening (τS = N). Prior to the start of the game, S’s type is drawn with

prior probability P [τS = L] = p0.

At the beginning of each period t the state of the world, θt ∈ {0, 1} is drawn

from a distribution with P [θt = 1] = 1/2. T observes the state θt but S does not.

States are drawn independently across time. After observing θt, T sends a message

mt ∈ {0, 1}. If τS = L then S observes mt, otherwise, if θS = N , then S does not

observe mt. Next, S chooses an action at ∈ [0, 1], players observe their payoffs and

the game continues to next period.

Per-period payoffs reflect two factors. First, they capture S’s desire for at to

match θt during each period t and T ’s desire for at to not match θt in each period.

Second, they reflect T ’s desire, all else equal, for mt to match the state. Formally,

payoffs in period t for S and T are, respectively

uS(at|θt) = −(at − θt)2

and

uT (at|θt) = −(at − (1− θt))2 − I[mt 6= θt]c,

3Other work with dynamic reputation considerations for monitors: Diamond (1991) and Rajan
(1992) for banking, Dye (1993) for auditors, Mathis et al. (2009) for ratings agencies, and Stolper
(2009) for regulators.
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where c > 0.

Dynamic payoffs are given by the (discounted) sum of per-period payoffs. Play-

ers discount payoffs at a rate δ ∈ [0, 1).

Strategies and equilibrium concept

Our analysis focuses on a selection of Perfect Bayesian Equilibrium (PBE). A PBE

is an assessment (σ, µ) such that (i) the strategy profile σ is sequentially rational

given beliefs µ and (ii) µ is derived from σ via Bayes’s rule whenever possible. We

select equilibria that are stationary and symmetric. We study equilibria that are

stationary in the sense that (i) T ’s updated belief in period t only depends on the

prior belief in period t−1 and the action choice of S in period t−1; (ii) T ’s choice

of mt depends only on the current state θt and (iii) Further, we study equilibria

that are symmetric in the sense that the probability that mt = θt in any period

is independent of the value of θt. Henceforth, we refer to assessments with these

features as “equilibria.”

We now define stationary strategies and beliefs. Formally, a strategy for T

is a mapping σT : {0, 1} → [0, 1] from the current period state into the set of

probability distributions on messages.4 A stationary strategy for type L of S is a

mapping σLS : {0, 1} → ∆[0, 1] from the current period message mt into the set of

probability distributions on actions. As type N of S does not observe the message

in each period, a strategy for this type is simply a choice of action.

We also specify beliefs for both T and S. A belief system for T is a mapping

µT : [0, 1] × [0, 1] → [0, 1] from the set of actions and probability distributions on

S’s type in period t−1 into the set of probability distributions on S’s type in period

t.5 A belief system for type L of S describes S’s belief about the current period

state and is a mapping µS : {0, 1} → [0, 1] from the set of current period messages

to the set of probability distributions on the current period state. Finally, it is

unnecessary to define a system of beliefs for type N of S as they never observe T ’s

messages.

4Note as the support of mt is {0, 1}, a mixed strategy is given by a choice of Bernoulli
distribution.

5As above, recall that S’s type is distributed Bernoulli.
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Analysis

Our analysis focuses on demonstrating the existence of a unique equilibrium and

characterizing equilibrium behavior.

First, we characterize (i) the L type of S’s beliefs about θt, given T ’s messaging

strategy and (ii) each type of S’s choice of at. With this in hand, we offer a

sequence of Lemmas that describe features of equilibrium play. The first pins

down continuation values for the case when T is certain that S is the L type. We

then show that if T believes that S is sufficiently likely to be type S, they choose

mt 6= θt with positive probability, and that, conversely, if T believes that S is

sufficiently likely to be type L they play mt = θt with probability 1.

Then, we characterize equilibrium behavior as a function of pt. With a series

of Lemmas, we show that we can partition equilibrium behavior depending on

whether pt > c or not. In particular, if pt > c then equilibrium behavior is prob-

abilistic; T mixes between sending a “truthful” signal, mt = θt and a “dishonest”

signal, mt 6= θt, and the listening type of S mixes between acting on information

and mimicking the not listening type.

We begin by characterizing the beliefs of S about the current state θt given the

current period message mt. To set notation, let pt be T ’s belief in period t that S

is type N and let µ(pt) be the probability that T chooses mt = θt given pt.

Using Bayes’s rule we have that S’s beliefs after observing each message are

P (θt = 1|mt = 1) =
P (mt = 1|θt = 1)P (θt = 1)

P (mt = 1)
=

µ(pt)
1
2

µ(pt)
1
2

+ (1− µ(pt))
1
2

= µ(pt)

and

P (θt = 1|mt = 0) =
P (mt = 0|θt = 1)P (θt = 1)

P (mt = 0)
=

(1− µ(pt))
1
2

(1− µ(pt))
1
2

+ µ(pt)
1
2

= 1− µ(pt).

Given our focus on symmetric equilibria, we have that P (θt = 0|mt = 0) = µ(pt)

and P (θt = 0|mt = 1) = 1− µ(pt).

We now consider S’s behavior. First, recall that the N type does not observe

mt. From this it follows immediately that, in equilibrium, the N type chooses

at = 1/2 in every period. Because of this, throughout we assume that following

any off-equilibrium-path action at 6= 1/2, T updates its belief in the following
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period to place probability 1 on the L type. Given that type N always chooses the

same action, namely at = 1/2 we now consider the conditions under which type L

chooses an action that is distinct from the N type’s action. Moving forward, we

say that S acts on information if they choose at 6= 1/2. Further, as type N always

chooses the same action and is effectively a “behavioral type,” we will henceforth

refer to the L type simply as “S.”

We now provide some characterization of S’s decision to act on information.

First, recall that after observing an action at 6= 1/2, T updates its belief such that

pt+1 = 1. Given that all such actions lead to the same belief for T , if S chooses

to act on information in period t, S will choose to maximize their static expected

utility, given their belief µ(pt). Formally, if S chooses to act on information, their

choices of at after observing mt = 1 mt = 0 are

max
at

−µ(pt)(at − 1)2 − (1− µ(pt))(at − 0)2 = µ(pt),

and

max
at

−µ(pt)(at − 0)2 − (1− µ(pt))(at − 1)2 = 1− µ(pt),

respectively.

Let α(pt) be the probability that the informed S acts on information, and sup-

pose that with probability 1−α(pt) S chooses xt = 1/2 and mimics the uninformed

type.

First, we characterize equilibrium behavior when T is certain that S is the

listening type. Lemma 1 shows that, in this case, equilibrium continuation values

are unique. This observation facilitates the rest of the analysis because it also pins

down payoffs in all periods after L type of S chooses to act. To set notation, let

Vi(pt) be player i’s continuation payoff at the start of a period t in which T ’s belief

is pt.

Lemma 1. If pt = 1 then continuation values are given by

VS(1) = − 1

1− δ
1− c2

4

VT (1) = − 1

1− δ
(1 + c)2

4
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Proof. First, note that if pt = 1, then p′t = 1 for all t′ > t. Therefore, S will always

choose x to maximize its static payoff, as it cannot influence T ’s beliefs. From

above, we know that ,

VS(1) = −µ(1− µ) + δVS(1).

T must be indifferent between m = θ and m 6= θ, which holds iff µ = 1+c
2

(see next

proof and plug in α = 1 and p = 1). Thus,

VS(1) =
1

1− δ

(
− 1 + c

2
(1− 1 + c

2
)
)

= − 1

1− δ

(1− c2

4

)
Additionally, since in each state T must be indifferent we have

VT (1) = −µ2 + δVT (1)

⇔ VT (1) = − µ2

1− δ

⇒ VT (1) = − 1

1− δ
(1 + c)2

4

As proof of Lemma 1 reveals, continuation values are uniquely pinned down

by the fact that, once T becomes convinced that S is listening, behavior becomes

quite simple. Knowing that T is aware it is listening, S maximizes its static utility.

As a consequence, T uses a mixed strategy to obscure the true state. Solving the

resulting indifference conditions yields the continuation values.

The next step in our analysis focuses on low values of pt. In particular, we show

that if T is sufficiently sure that S is not listening, there is a unique equilibrium.

Lemma 2. If pt ≤ c then, there is a unique equilibrium in which µ(pt) = 1 and

α(pt) = 1.

Proof. Without loss of generality given our focus on symmetric equilibria, suppose
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θt = 1. For T we have

UT (m = 1|θ = 1) = ptαt

(
− µ2

t + δVT (1)
)

+
(
pt(1− αt) + 1− pt

)(
− 1

4
+ δVT (pt+1)

)
UT (m = 0|θ = 1) = ptαt

(
− (1− µt)2 + δVT (1)

)
+
(
pt(1− αt) + (1− pt)

)(
− 1

4
+ δVT (pt+1)

)
− c.

Thus, UT (m = 1|θ = 1) ≥ UT (m = 0|θ = 1) iff c ≥ αt(2µt − 1)pt, which always

holds if c ≥ pt.

Note that if T chooses at = θt with probability 1, then S must act. This

completes the proof.

This result provides important information about qualitative features of equilib-

rium play. Specifically, if pt ≤ c then (i) T becomes completely “honest,” choosing

mt = θt and (ii) the listening type of S acts on their information with probability

1. Given this, the path of play in future periods is predictable and falls into one

of two categories depending on S’s type. If S does not act in a period in which

pt ≤ c, then T updates its belief to pt+1 = 0. Consequently, in all future periods,

as T knows S is not listening it sets mt = θt. If S does act on information then T

knows for sure that it is the listening type, and in all future periods behavior is as

described in the proof of Lemma 1.

Our first two results showed that S acts on information with probability 1 if

pt ≤ c or if pt = 1. Our next result demonstrates that for intermediate values of

pt S always acts on information with positive probability.

Lemma 3. In equilibrium, (i) α(pt) > 0, (ii) µ(pt) > 1/2, and (iii) pt > c implies

µ(pt) < 1.

Proof. First, we prove (i). To derive a contradiction, suppose α(pt) = 0. Note

that T’s best response to α(pt) is µ(pt) = 1. However, given that µ(pt) = 1, S may

profitably deviate to α′(pt) = 1, a contradiction.

Next, we prove (ii). To start, note that µ < 1/2 cannot be optimal since it

induces the same variance in beliefs for S as 1/2 + |1/2 − µ| but incurs greater

lying costs for T . Next, suppose µ(pt) = 1/2. In this case, S’s best response is

to choose x = 1/2 with probability 1. However, then T could profitably deviate

µ = 1.
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Finally, we prove (iii). To derive a contradiction, suppose pt > c and µ(pt) = 1.

By earlier lemma, for T to be honest requires c ≥ αt(pt). If µt = 1 then S’s best

response is to always act, αt = 1. Thus, the condition for T to be honest becomes

c ≥ pt, a contradiction.

The proof of Lemma 3 illustrates an important strategic tension that arises in

equilibrium. If there is a reputation at which S will not ever act on information,

then T wants to use its information for sure. But then S will learn perfectly for

T ’s action and will want to always act on that information. Due to this tension,

there is always a chance that S acts on its information.

Additionally, T is always strictly more likely to choose the action that matches

the state. It has to favor one direction, because S would otherwise always want to

choose x = 1
2

and, in turn, T would want to just match the state. Furthermore,

it has no incentive to favor the action that does not match the state, since it

randomizes in order to create risk for S.

Next, we establish a lower bound on how much T ’s belief changes between

periods after seeing x = 1
2
. It is a useful property for the equilibrium existence

argument

Lemma 4. In equilibrium, pt − pt+1 > pt − pt−c
1−c > 0 for any belief pt.

Proof. Fix pt. By previous lemmas, at any pt we must have either αt = 1 or

αt ∈ (0, 1). In the first case, Bayes rule immediately yields pt+1 = 0, thus, pt −
pt+1 = pt > pt − pt−c

1−c > 0.

Next, assume αt ∈ (0, 1). This also implies that µt < 1, since µt = 1 iff pt < c

and if pt < c then αt = 1. Thus, T must be indifferent in equilibrium, which

implies the following must hold

c = αt(2µt − 1)pt

⇔ αt =
c

pt(2µt − 1)
.

In any equilibrium, by Bayes rule we have

pt − pt+1 = pt −
(1− αt)pt

(1− αt)pt + 1− pt
= pt −

pt − c
2µt−1

1− c
2µt−1
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Note, pt − pt+1 is decreasing in µt. Thus, pt − pt+1 is minimized at µt = 1, which

yields the result.

Using Lemma 4, we now characterize equilibrium behavior when T is fairly

certain S is not listening, but still suspicious enough to not always follow her

information. Specifically, we show that there is an interval of beliefs just above c

for which T mixes but S always acts on its information. It does so because T is

very likely to act according to its information. Therefore, even though observing

T ’s action is not fully informative, S have enough information to act boldly in

the information it acquires from its secret intel. Additionally, we show that in

this region of beliefs T ’s action is more informative as pt decreases towards c and

converges to being fully informative.

Lemma 5. If pt ∈ (c, c/
√
δ(1− c2)], then µ(pt) = 1

2
+ c

2pt
and α(pt) = 1 in

equilibrium.

Proof. We start by showing that such an equilibrium exists. We show that no

player has a profitable deviation from the proposed strategies given their beliefs,

and that beliefs are derived via Bayes rule when possible. Fix pt ∈ (c, c/
√
δ(1− c2)],

µ(pt) = 1/2 + c/2pt, and α(pt) = 1.

First, in order for T to mix, they must be indifferent. Using the indifference

condition from the proof of Lemma 2 and substituting for α(pt) = 1, we find that

T is indifferent if and only if

µ(pt) =
1

2
+

c

2pt
,

which we have assumed.

Next, note that in period t+ 1, if player S does not act in period t, Bayes rule

yields pt+1 = 0. Further, if player S does act in period t, it follows from Bayes rule

that pt+1 = 1. Therefore, by Lemmas 1 and 2, the continuation values for each

player in period t+ 1 are pinned down.

Using these continuation values, we see that S cannot profitably deviate from

acting in period t if and only if

−µt(1− µt) + δVS(1) ≥ −1

4
+ δ2VS(1).
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Substituting for µt, this condition holds if and only if

pt ≤
c√

δ(1− c2)
.

We now prove uniqueness. The above proof implies there cannot exist another

equilibrium in which pt+1 < c. Thus, there cannot be any other equilibrium in

which αt ≥ p−c
p(1−c) , since by Bayes’ rule pt+1 = (1−αt)pt

(1−α)pt+1−pt ≤ c for all αt ≥ p−c
p(1−c) .

To obtain uniqueness, suppose there exists an equilibrium in which αt <
p−c
p(1−c) ,

which implies pt+1 > c. Note, we must have pt > c+ (1− c)c, otherwise by Lemma

4 pt+1 < c.

By Lemma 3, αt > 0, so S must be mixing and we must also have T mixing.

This implies αt = c
pt(2µt−1) . Thus, in such an equilibrium we have

c

pt(2µt − 1)
≤ p− c
pt(1− c)

µt ≥
1

2
+
c(1− c)
2(pt − c)

.

Since both players are mixing, we have that pt+1 =
pt− c

2µt−1

1− c
2µt−1

. Since this term is

increasing in µ and µ ≥ 1
2

+ c(1−c)
2(pt−c) , substituting in we have that

pt+1 ≥
pt − c

(
c(1−c)
p−c )

1− c

(
c(1−c)
p−c )

.

Additionally, Lemma 4 implies

pt+1 ≤
pt − c
1− c

.

Thus, a necessary condition for such an equilibrium to exist is

pt − c

(
c(1−c)
p−c )

1− c

(
c(1−c)
p−c )

≤ pt − c
1− c

⇔ pt ≤ c+ (1− c)c,
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a contradiction.

In light of Lemma 4, we have pinned down equilibrium behavior for pt ∈
[0, c/

√
δ(1− c2)] ∪ {1}. By using an inductive argument and leveraging Lemma

4, we can complete the characterization for all reputations. Essentially, we can

partition the space of reputations into intervals that are distinguished primarily

by the probability that S acts on its information. Moreover, we show that the

partition is unique and, in turn, equilibrium behavior is too.

The equilibrium has the property that S will be “biding time”. In each period,

either (i) S acts and is “found out” or (ii) S does not act and play proceeds with

T slightly less suspicious. Each additional period in which at = 1/2 makes T more

“honest.” In turn, this makes acting more attractive for the L type of S. Thus,

equilibrium behavior is probabilistic and repeated rounds of no action from S do

not imply that they are N type.

We provide the details below in Lemma 6 and Proposition 1.

Lemma 6. There exists an equilibrium.

Proof. We construct an equilibrium by using an induction argument. First, we

prove the base case. Take any p ≤ c√
δ(1−c2)

. Define µ(p) as the solution to

µ(1− µ) =
1

4
+ δ
[
V (1)− V (p)

]
.

Note from previous lemmas we have V (p) is weakly decreasing in p for p ≤ c√
δ(1−c2)

,

which implies µ(p) is decreasing in p. Next, define the function p(p) as

p(p) = p(1− c

2µ(p)− 1
) +

c

2µ(p)− 1
.

By construction, if pt = p(p) there exists an equilibrium in which µt = µ(p),

αt = c
p(2µ(p)−1) , and pt+1 = p.

Finally, we show that p(p) is strictly increasing in p. Let p′ > p′′ then

p(p′)− p(p′′) = p′(1− c

2µ(p′)− 1
) +

c

2µ(p′)− 1
−
[
p′′(1− c

2µ(p′′)− 1
) +

c

2µ(p′′)− 1

]
= p′ − p′′ + c

2µ(p′)− 1
(1− p′)− c

2µ(p′′)− 1
(1− p′′).
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Since µ(p) is decreasing in p, c
2µ(p)−1 is increasing in p. Thus,

p(p′)− p(p′′) ≥ p′ − p′′ + c

2µ(p′)− 1
(1− p′)− c

2µ(p′)− 1
(1− p′′)

⇒ p(p′)− p(p′′) ≥ (p′ − p′′)(1− c

2µ(p′)− 1
) > 0

Since p(p) is strictly increasing and continuous in p, this implies an equilibrium

exists for all p ∈
(

c√
δ(1−c2)

, p
(

c√
δ(1−c2)

)]
.

Finally, note that V (p) = −1/4 + δV (pt+1). Recall that pt+1 is increasing in p,

which implies that V (pt+1) is decreasing in pt+1. Therefore, V (p) is decreasing in

p.

This completes the proof of the base case.

For the induction step, suppose that there exists an equilibrium for p ∈ (pk−1, pk]

and that V (p) is decreasing in p for p ∈ (pk−1, pk]. We will show that there is an

equilibrium for p ∈ (pk, pk+1] and that V (p) is decreasing in p for p ∈ (pk, pk+1].

Fix p ∈ (pk−1, pk]. The fact that V (p) is decreasing for p ∈ (pk−1, pk] implies

that µ(p) is decreasing for p ∈ (pk−1, pk]. As above, by construction of p(p), if

pt = p(p) then there exists an equilibrium in which µt = µ(p), αt = c
p(2µ(p)−1 , and

pt+1 = p. Finally, note that by the arguments above, p(p) is strictly increasing in

p. This implies that an equilibrium exists for all p ∈ (pk, pk+1]. As above, note

that V (p) = −1/4 + δV (pt+1). Recall that pt+1 is increasing in p, which implies

that V (pt+1) is decreasing in pt+1. Therefore, V (p) is decreasing in p.

Finally, we show that as limk→∞ pk = 1. First, note that pk ≤ 1 for all k by

construction. To complete the proof, for a contradiction suppose that limk→∞ pk =

p < 1. This implies that for all ε > 0, p(p− ε) ≤ p. However, for sufficiently small

ε > 0, this cannot hold, as for all p < 1, pt − pt+1 > 0 by Lemma 6.

Proposition 1. There is a unique SSPBE.

Step 1: Lemma [unique below p0. implies uniqueness below for p ≤ p0.]

Step 2: Suppose our equilibrium is the unique SSPBE for pk−1. We show that

if p ∈ [pk−1, pk], then the equilibrium characterized in Proposition [existence] is

unique. This step has two parts.
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Part 1: In our equilibrium, must get below p0 in k steps. To show a contradic-

tion, suppose there exists an equilibrium σ′ that takes k + 1 steps.

Claim: In σ′, we must have p′t+1 > pk−1. If not, then p′t+1 < pk−1 and by the

induction assumption there is a unique equilibrium that gets below p0 in weakly

less than k − 1 steps, but that would contradict σ′ taking k + 1 steps.

So, suppose we have σ′ such that p′t+1 > pk−1. The continuation value in σ

satisfies

VS(p;σ) ≥ δk[δVS(1)− µ(p0)(1− µ(p0)] +
k∑
t=1

(−1

4
) δt−1 ≡ V S(p;σ).

The continuation value in σ′ satisfies

VS(p;σ′) ≤ δk+1[δVS(1)] +
k+1∑
t=1

(−1

4
) δt−1 ≡ V S(p;σ′).

We have V S(p;σ) ≥ V S(p;σ′) if and only if

δk[δ VS(1)− µ(p0)(1− µ(p0)] +
δk

4
− δk+2 VS(1) ≥ 0 (1)

δ

4
(1− c2)− δ

4
(1− c2) ≥ 0, (2)

where (2) follows from the definitions of µ(p0) and VS(1). Thus, we have shown

that VS(p;σ) ≥ VS(p;σ′).

Furthermore, V S(p;σ′) ≥ VS(p;σ′′) for any equilibrium σ′′ that takes k+` steps

to get below p0.

Part 2: A similar argument shows that we cannot have an equilibrium σ′ that

takes fewer than k steps to get below p0. That would require that p′t+1 < pk−2,

which in turn implies that pt+1 < pk−2, a contradiction.

Step 3: Assume p ∈ [pk−1, pk]. Let σn denote the equilibrium that takes n steps

and σk the k step equilibrium, with n > k. T ’s equilibrium mixing probability

15



µ(σn) in σn solves

µ(1− µ) =
1

4
+ δ
[
V (1)− V (pt+1;σn)

]
, (3)

while T ’s mixing probability µ(σk) in σk solves

µ(1− µ) =
1

4
+ δ
[
V (1)− V (pt+1;σn)

]
, (4)

Note that by step 2 we have VS(p;σn) ≤ VS(p;σk). Thus, RHS(3) ≥ RHS(4), which

implies that µ(σk) ≥ µ(σn). In either equilibrium the belief in the next period is

given by

pt+1 =
pt − c

2µ−1

1− c
2µ−1

.

Since pt+1 is increasing µ and µ(σk) ≥ µ(σn) it must be that pt+1(σk) > pt+1(σn),

but this contradicts that pt+1(σn) > pk−1 > pt+1(σk).

Discussion of Next Steps

We see two clear next steps. First, relax assumption that θt is redrawn in each

period. Second, relax assumption that “acting” brings belief to 1. Each allow

us to address a wider range of applications. Additionally, we will characterize

benchmarks with commitment.

Extension idea 1: In baseline model, θt is redrawn i.i.d. in each period. Al-

ternative: let θt be “sticky.” Baseline model applies better to situations where

T ’s desired outcome changes day to day, e.g. battlefield plans. Sticky θt applies

to settings where T ’s desired outcome day to day has some persistence. Criminal

investigation is one possibility, seems natural to have θt = θt+1 in this setting.

Extension idea 2: In baseline, at 6= 1/2 always comes from L type. In many

applications, this is not true (e.g. cracking of Enigma code). Several ways to model

this. Equilibrium path should be more nuanced, involve fewer “absorbing” states.
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