B LTV LN A T 1AL S0 e U B L ST LR M UL Ly ST G UL T A L )

See hitps:/pubs.acs org/sharing guidelines for options on how o legitimately share published articles.

THE JOURNAL OF

PHYSICAL
CHEMISTRY

L B THE AMEEICAN EXEICAL 10CIETY This article is lisensed under CC-BY 4.0 &) ()

pubs.acs.org/JPFCB

E(n) Equivariant Graph Neural Network for Learning Interactional
Properties of Molecules

Published as part of The Journal of Physical Chemistry B virtual special issue “Machine Learning in Physical
Chemistry Volume 2",

Kieran Nehil-Puleo, Co D. Quach, Nicholas C. Craven, Clare M"Cabe, and Peter T. Cummings™

C'm! This: L Phys. Chem. B 2024, 128, 1108-1117 . Read Online

AC CESS | |l Metrics & More | Article Recommendations

@ Supporting Information

ABSTRACT: We have developed a multi-input E(n) equivariant
graph convolution-based model designed for the prediction of
chemical properties that result from the interaction of heteroge-
neous molecular structures. By incorporating spatial features and
constraining the functions learned from these features to be
equivariant to E(n) symmetries, the interactional-equivariant graph
neural network (IEGNN) can efficiently learn from the 3D
structure of multiple molecules. To verify the [EGNN's capability
to learn interactional properties, we tested the model’s perform-
ance on three molecular data sets, two of which are curated in this
study and made publicly available for future interactional model
benchmarking. To enable the loading of these data sets, an open-source data structure based on the PyTorch Geometric library for
batch loading multigraph data points is also created. Finally, the IEGNN's performance on a data set consisting of an unknown
interactional relationship (the frictional properties resulting between monolayers with variable composition) is examined. The
IEGNN model developed was found to have the lowest mean absolute percent error for the predicted tribological properties of four
of the six data sets when compared to previous methods.
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B INTRODUCTION formulated from matrix multiplications, which enable param-
eters to be easily optimized. More recently, deep neural
network-based models have gained popularity in developing
QSPR relations, despite the difficulty of prediction explain-
ability and the complex implementation required, largely due
to the predictive power of this class of models. Examples of
deep neural network-based models that have been used for
predicting chemical properties include conventional multilayer
perceptron  (MLP), graph neural networks (GNNs), 3D-
convolutional neural network, and variational autoencoder.”™’
Properties that have been predicted with deep neural networks
are very diverse but include toxicity,” solubility,” antibiotic
activity,’ and tribological behavior,"" ™" among others (see
for example').

Predicting the trbological properties of materials is
important to numerous industrial applications. Tribological
properties include viscosity of bulk systems and the coefficient

The enormous compositional space available when designing
new molecules necessitates the development of efficient
methods for estimating molecular properties. For example,
the size of the design space for molecules of up to 17 atoms of
C, N, O, and § is estimated to be 1664 billion unigque
molecules.” To reduce the cost of characterizing and exploring
such vast chemical design spaces, quantitative structure—
property relationship (QSPR) models can be used. QSPRs can
efficiently give an estimate of the collective properties of a
molecular system, given a quantitative description of the
chemical structures of the constituent molecules. Thus, QSPRs
allow for the prediction of chemical and material properties of
uncharacterized molecules, greatly reducing the costs of
screening a chemical library for a molecule with ideal
properties.

Models that have been traditionally used for QSPR
prediction include, but are not limited to, multilinear

regression, polynomial regression, and random forests.” Received: MNovember 3, 2023 BE D
The aforementioned models have largely been used due to Revised:  December 18, 2023 ==
their simplicity, explainability, and ease of model implementa- Accepted:  December 20, 2023 ¥

tion. By explainable, we mean that the importance of features Published: January 17, 2024 h

of the input on model predictions can be estimated. These
models are relatively easy to implement since they are
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of friction (COF) of interfacial systems. The prediction of
these properties is a nontrivial task requiring the intelligent
design of models and the laborious collection of character-
ization data for different materials. Previous QSPR models for
the prediction of tribological properties have relied on
molecular deseriptors and MLP-structured models.' ™' In
these studies, the effects of various lubricants on the friction
between an experimentally characterized interface and a QSPR
madel were built to predict the wear reduction induced by the
lubricant.

Of the various classes of deep learning models that have
been used to predict molecular properties, recently GNNs have
gained in popularity’™™'" due to their ability to learn directly
from molecular structures. GNNs are a general class of models
that can learn to perform different graph-based predictive tasks
such as node inference, edge inference, and graph-level
classification or regression. GNNs have been applied to a
wide ran]ge of graph-based problems such as recommendation
systems, © chemical reaction prediction,'” and numerous
others (see for example refs 18—20). In the context of
chemistry, GNNs learn to make predictions from the structures
of molecular graphs. This type of learning is in contrast to
methods that utilize intermediary representations of the
molecular graph structure, such as Morgan ﬁ.rlg,er|:rri|1L,"l and
sequence-based representations, such as SMILES™ and
SELFIES™

The graph data structure consists of a set of nodes
connected by edges, formally: G = (N, E). The superior
performance of GNNs in molecular tasks is likely due to the
efficient representation of molecules as graphs: atoms
(represented by nodes) connected by bonds (represented by
edges). This efficient representation results in a reduction in
the cardinality of the set unique deseriptions needed to encode
a molecular structure and thus may lead to more efficient
learning.**

There are several variations of neural network layers that can
learn about graph structures such as the MPN,”™ GraphS-
AGE,* and GAT.”" The variation on which we base the model
developed herein uses mulliple feed-forward neural networks
to learn graph convelutions.™

Learning in GNNs is typically performed by graph
convolution layers (GCLs) which enable the learning of
convolutional functions that combine structural patterns in the
graph to enable information about the graph structure to be
learned. By applying several GCLs in series, the GNN is able to
learn to combine structural patterns in the graph to make a
prediction. The GCL is defined as

m = k), hzj )

m, = Z m;

f#1
h:+L = ¢’p¢{h:r mj)

where ¢b, and ¢y are feed-forward fully connected neural
networks for the edge and node features, bl ¢, and m, are the
node features of node ¢ after GCL layer I, the edge features
between node i and j, and the “message” accumulated,
respectively.

Conventional GNNs are permutation equivariant networks
that operate on graph structured data. GNNs typically do not
include the spatial positions of the nodes of a graph such as the
atomic positions of a molecule in space. Recently GCLs have

1109

been constrained to be equivariant in the handling of spatial
features.'” Equivariance to the Euclidean group [E(n)] was
applied to create an equivariant graph convolution layer
(EGCL) which enabled the construction of an equivariant
graph neural network (EGNN) models."” The EGNN's major
innovations were the utilization of spatial features for
predictions and the sensible treatment of transformations to
these features. The EGNN showed significant improvement in
prediction accuracy as well as a reduction in the number of
training examples needed to learn tasks. These constraints
enabled the leamning of transformations on the spatial
coordinates that are equivariant with the symmetries of the
Euclidean group. More specifically, equivariance on the
Euclidean group has been imposed on graph-based models
to enable the learning of transformations of spatial features that
are equivariant to rotations and translations, and therefore
reflections as well.

As stated previously, GNNs learn information about graphs
G = (N, E), where spatial features may be included in the node
features of the graph, but the spatial features would be treated
the same as other node features, meaning without E(n)
equivariance. Unlike GNNs, EGNNs treat the coordinates as a
separate category of information, G = (N, E, X). Concisely, the
EGCL performs a transformation on node and coordinate
features, ', ¥*! = EGCL(K, %, ¢,) where b are the node
features, ¥’ are the node coordinate embeddings, ey are the
edge features between node i and j, after layer | convolution,
i g, and gby, are MLF model used for the edges, coordinates,
and node features, respectively. In detail, each EGCL performs

m, = qz{llf, Iljll, |x: - x';| , cU)
=+ Y (xl — x)h(m,)
i#i
m, = E my
i
b= ¢, (b} m,)

Intuitively, the EGCL must have the property that,
Qx*! +g, K*! = EGCL(Qx™!' + g K

where (] is a rotational or reflectional transformation and g is a
translational transformation s.t. Q € R**, and g € R¥, where d
is the dimensionality of the coordinate space of x.
Equivariant mapping, or equivariance, is a constraint placed
on transformations that arise from physical considerations of
the group.” In particular, equivariance is used to describe the
symmetry of operations on groups. Equivariance enables
models to produce equally varying predictions. In simple
terms, this means that our model should learn the properties of
graph structures regardless of whether they are reflected,
translated, or rotated in space. By constraining the model to be
equivariant on the Euclidean group, the input space needed to
be learned is significantly reduced, thereby making the model
more robust and efficient at learning from molecular data. In
theoretical descriptions of molecular funds, invariance of the
interaction potential between molecules with respect to
translation, rotation, and reflection of the molecule pair yields
a powerful reduction in the dimensionality of the representa-
tion of the interaction (as well as relative structure) of the
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Figure 1. (a) Simplified schematic of the systems studied. The top monolayer is a mixture of two types of terminal group chemistries (A,B), studied
at two different mixing ratios (25:75 and 50:50), while the bottom monoclayer is homogeneous (chemistry C). (b) Depiction of the 19 different
chemistries considered for alkylsilane end groups. From top to bottom, left to right, the terminal groups are amino, hydroxyl, methyl, acetyl,
carboxyl, isopropyl, cyano, ethylene, methoxy, nitro, difluoromethyl, perfluoromethyl, cydopropyl, pyrrole, phenyl, fluorophenyl, nitrophemnyl,

toluene, and phenal.

molecules that is needed in theoretical descriptions of
molecular fluids using statistical mechanies.™ ™"

Formally, equivariance is defined’” as follows. Let TeX—X
be a set of transformations on X for the group g € G. A
function ¢ X — Y is equivariant to g if there exists an
equivariant transformation on its output space 5 ¥ — Y such
that $(T,(X)) = S((X)).

A pral:ﬁem not commonly addressed in QSPR models is the
fact that many of the chemical properties these models try to
predict result from the interaction of multiple dissimilar
molecules. Examples of interactional properties are the COF,
which is conditional on both molecules rubbing against each
other, and the binding energy of a drug, which is dependent on
the structure to which it is binding to. In most current QSPR
models, the interactional nature of the data is ignored, and
predictions are made by looking at the properties of just one of
the molecules. This is a major limitation for predicting
properties that result from the interaction of multiple
molecular species. Modifications previously made to GNNs
to enable predictions from multiple input graphs are spatio-
temporal ‘%raph convolution networks,” graph co-attention
networks,” and Multi-Resolution GNN.™ Unfortunately,
maodels like spatio-temporal graph convolution networks rely
on temporal layers between the nodes in the input graphs,
necessitating input graphs to possess the same number of
nodes. Models such as graph co-attention rely on a varation of
the attention mechanism”® to enable “attention” to be paid to
the interaction between atoms in the molecule. The effects of
the addition of a linear attention layer to the GCL was
examined by the authors, but no improvement in the
petformance was observed. Due to the promise of EGNNs
and multi-input graph-based models to learn molecular
properties, we seek to further extend the conventional single-
input EGNN to learn properties that result from the
interaction of multiple atomic graphs in 3D space.

W METHODS

Data Sets. Simplified. For an initial test of the performance
of the models examined in this study, a simplified interactional
data set was created that used the total number of atoms
resulting from the molecule pair. For the graph-based models
used for this task, the node features were the one-hot encoding
of the atom type. One-hot encoding is a method for the
conversion of categorical data into a format that can be input

1110

into machine learning (ML) algorithms. The node and
coordinate features were extracted from the SMILES
representations of the molecules using the mBuild™
hierarchical, component-based molecular system building
package. The edge features were not used for this task.

To generate the data set, pairs of molecules were selected
from a random uniform distribution of the GDB chemical
universe data set.' The GDB data set was selected to ensure
that the structures of the selected molecules possessed no bias
toward a particular structure and therefore preserved the
generality of this benchmarking data set.

SASA. For an interactional property of intermediate
difficultly that results from 3D spatial properties, the solvent
accessible surface area (SASA) was used. The SASA is
caleulated using a sphere of a radius approximating the solvent
molecule to “probe” the surface of the solute molecule by
rolling it along the spheres of the solute molecule. The SASA is
an intermediate task for an interactional model to predict
because the approximate radius of the solvent molecule must
be estimated as well as the accessible surface of the solute
molecule. This means that a model that appropriately learns to
predict the SASA requires information from the spatial features
of both molecules.

The selection of molecule pairs and the preparation of node
and coordinate features were performed in the same way as for
the simgliﬁed data set. To calculate the resultant SASA the
BDKit,” chemoinformatics package was used. The RDKit
package utilizes the FreeSASA™ algorithm to calculate the
SASA. For this task, the node features were the one-hot
encoding of the atom type and the van der Waals radius of the
atom. The edge features were not used for this task.

Lubricating Thin Films. Monolayer film coatings have
shown potential as a means of lubricating surfaces with micro-
and nanometer separations. Such layers of coatings could
provide protection to the surfaces and minimize Ffrictional
forces that incur when these surfaces come into contact. An
optimized coating could remove design constraints as well as
increase the stability and lifetime of micro- and nanoscale
systems/devices. Monolayer films are composed of a layer of
grass-like molecules, where each molecule is made up of a
headgroup, a backbone or space chain, and a terminal group.
Each component of the molecules has been shown to impact
the lubricating ability of the film, though, the terminal group
has been shown to have the largest effect.™™ ™" Mult-
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Figure 2. {Top model) Schematic of the IEGNN model architecture. (Top far left) Input graphs can have different number of nodes, where h_ are
node features and x, are coordinate features for node n. (Top second from left) Multiple EGCL are used to learn the information about the graph
structure. {Top right) Information is learned in both graphs and the information is accumulated across each graph separately and is finally
concatenated and fed into another MLP to make a final prediction. (Bottom model) Schematic of the rmndom forest model used in ref 3. Final
prediction output is made by averaging across the predictions made by the ensemble of decision trees. One of the main differences between the twao
models is additional alterations to monolayer descriptors that occar prior to concatenation in the IEGNN.

component monolayer films, where each monolayer is made up
of two or more types of terminal group can also affect the
lubricating ability. "*****" This presents a huge parameter
space to be investigated, making it impossible to exhaustively
study such systems via experiments or computational
simulations. Hence, having an effective QSPR model to
extrapolate and predict the lubricating efficacy of different
monolayer film coatings i crucial to designing optimal
lubricating films. The lubrcating properties of monolayers
are examples of interactional properties with unknown
functional forms, representing an increased level of complexity
compared to the problem presented in the simplified and
SASA data sets.

In previous studies from our group, the tribological
properties of different monolayer films were investigated
using nonequilibrium molecular dynamics simulations.”™* """

111

In this paper, we are utilizing the data set reported in studies
by Summers et al*' and Quach et al’ A schematic of the
systems is shown in Figure 1. Both studies focused on the
effect of the terminal group on the lubricating meerliﬂ of the
thin monolayer film, though the Quach et al” study also
considered the effect of multicomponent monolayers, i.e, thin
films composed of two or more terminal groups at different
compositions. The Summers et al.*' study investigated 100
unique systems, while Quach et al.* considered 9672 unique
system designs, together creating a pool of 9772 data points.
In the Quach et al’ study, the tribological data set was used
to train a random forest ML model. Each system is represented
by its molecular “fingerprint”, which is a combination of
molecular descriptors for component terminal group chem-
istries. Molecular deseriptors represent physical and chemical
properties of molecular chemistry that can be used for QSPR

htips.fdalong/10.1021 /acs. jpcb. 3007304
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analysis and can be divided into four categories: size, shape,
complexity, and charge distribution. The molecular descriptors
of each terminal group were calculated with RDKit, through its
corresponding hydrogen- and methyl-capped structure. The
hydrogen-capped structure was used to determine properties
relating to shape, and the methyl-capped structure was utilized
to calculate the remaining properties. The hydrogen-terminus
structure was found to be sufficient in describing shape-related
properties, and the methyl-terminus structure was found to
better approximate other properties assimilating scenarios
when the terminal group is attached to the alkyl chain. Each of
these structures were represented by 53 descriptors,
summarized in the Supporting Information (see Table S1).
Through this procedure, the molecular descriptors for the top
and bottom monolayers are first independently caleulated. The
descriptors of heterogeneous monolayers, ie, monolayers
made up of two terminal groups, are weighted averages (by
relative composition) of the components of terminal group
deseriptors. Deseriptors of the two monolayers are combined,
storing their mean and minimum for each pair of deseriptors,
forming the raw “fingerprint” of the system. Even though this
representation does not fully capture the complete monolayer
structure, such as information related to the distribution/
clustering of chains in the monolayer, because we are primarily
interested in the effect of terminal group chemistries on the
tribological properties of the film coatings, such a set up was
found to be sufficient. These values underwent further feature
reduction steps through which those that had low variance or
were highly correlated were removed and reduced. Descriptors
whose variance were less than 2% were removed, while groups
with greater than or equal to 90% correlated were reduced to a
single attribute. The reduced list of molecular descriptors is
then used as the input parameters to the ML models.

In summary, Quach et al.” performed a large-scale molecular
dynamics screening study to produce a data set consisting of
the frictional properties (COF, and the adhesive force, F, that
measures the force required to overcome the attraction
between the two functionalized surfaces, see Figure 1) that
resulted from the shearing of monolayers with of alkylsilane
chains with different terminal groups. Quach et al.” then used
an ensemble of decision trees (a random forest) to predict the
tribological properties of various monolayers using the
monolayer descriptors described above (see Figure 2 for a
depiction of the model).

For models reported herein, in addition to the molecular
descriptors  obtained through RDKit, created through the
procedure described above, we also included coordinate
information on the end groups. We loaded the 3D molecule
structures from their SMILES representation using mBuild and
then processed these structures into bond edge lists,
coordinates, and node features for the graph-based models.
To get these 3D molecular structures from SMILES we used
mBuild since, in our experience, it tends to produce more
physically realistic 3D structures than RDKit. For the graph-
based models, the node features were the one-hot encoding of
the atom type concatenated with the previously used molecular
descriptors  deseribed above. For the purely MLP-based
models, the monolayer descriptors outlined in the preceding
paragraph were the only inputs.

Multi-Graph Data Point. Due to the limitations of
working memory, the entire data set cannot be loaded at
once and must be loaded in batches. Batch loading presents
difficulties because batch loading of graph data requires special
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handling of the data that is distinct from the image or sequence
data. To enable batch loading of multigraph data, we created a
custom data structure based on the PyTorch Geometric™
(PyG) data set.

To create the custom Py data set, we subclassed the
PyG.Data object and made a modification to allow for data
points to consist of a variable number of graphs. Multigraph
data points can be stored in a python list for further processing
by PyG's collate function. The PyG collate function
conglomerates all multigraph data points into a PyG data set
which can then be batch loaded. Because saving a large python
list of graph structures is inefficient, PyG collates the list into
one very large PyG Data object before it is saved to memory.
The collated data object concatenated has all examples
combined into one big data object and, in addition, returns a
slices dictionary to reconstruct single examples from this
object.™ To the authors’ knowledge, this is the first openly
accessible implementation of a PyG data set that can batch
load any number of input graphs for a data point. This data
structure is open-access and can be used by installing the
mData python software package” data structure for the loading
of multigraph data points. Example usage for creating a data
point is shown in Listing 1.

Listing 1: Example usage of the mData multi-graph input
data structure.

from elmta impert Hulti_Dmts, Malti_Coord_Dmts
for g.triplet in datsest;
b, Bl, h.2 = gut node festures (g rriplet)
wdges O, odges 1, odges I = get_adge_iwdewes{g_triplac)
=8, x i, 22 = gut_ccordinatea(p teiplet)
0.8, a1, n.2 = get_n.scden{g_triplet)
¥ = get_propertylg triplat)
if =t use_coord:
dutageing = FMulri Daval
n_gragha = 4,
node_feasures = [h9, n.1, b2,
wdge_tndexs = [edges O, edges 1, sdges 2],
n_tedea = [w 0, 0 i, = 3],
y=r
nles:
datagoins = Multi Coord Dassd
n_graphs = 3,
node_features = (b0, B.1, B3],
coordinates = [z 0, =¥, x_2],
siage_tindexs = [sdges_O. sdges_ 1, sdgee_21,
nvedes = [oo0. nol, =3,
yep
datnpoint_list.appand{dstagaink]

Fyli, Infeporyiataset, collate(datapoint 145t}

Interactional E(n) Graph Neural Network. Previous
models for the prediction of tribological properties do not
incorporate multiple graph inputs and were therefore unable to
learn information that results from the interaction of these
different molecules. To address this shortcoming, we created a
model that learns structural information from each graph input
and then learns how to combine this information to
understand the interaction of the input graph structures. We
call this model the interactional-equivariant graph neural
network (IEGNN). We created this model using the ML
framework PyTorch.”” The IEGNN is composed of EGCL,
MLPs, vector concatenation, and a node-level summation. The
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Figure 3. Computational workflow and respective software packages used to process the data set, load the data, and train the model.

structure of the IEGNN can be broken down inte four
components. The first is a series of ECLs that accumulate
information about the molecular structure of the molecules
[Figure 2 (top)]. The next component is a MLP, this layer
transforms the features learned from structural information
learned from the ECLs into a latent form. The third layer
consists of a global pooling layer which sums the node values
of the transformed graph together to create a global, or overall,
molecular deseriptor. The final layer is another MLP that
transforms the global molecular descriptor to make the final
property prediction. The algorithm for whele IEGNN is also
detailed below (see Algorithm 1).

Algorithm 1: IEGNN Forward Pass

for each g € ¢ do
h - ':jr-n-:mirr{h }
for each le(1,0)do

hE x = EGCLl{hE 1 r*u,'l
end for
b’ = o (1)
= me:g h';:r
end for
E=E &35 -d5
¥ = ¢g(Z)

where G is the set of input graphs, h are node features, [ is the
number of layers, x are the coordinate features, ¢ is r_h.e edge
between node i and node j, and ¢b represents a MLP

Training Workflow. The workflow used for h-ammg_ the
models from the SASA and simplified data sets can be
deseribed in five steps (see Figure 3 for visualization and
associated software needed for each step):

1. Select two molecules randomly from the GDB SMILES

library.

2. Load the molecular graph structure and estimates of the

atomic coordinates from the mBuild package.

3. Estimate the interactional property either from RDKit or
a simple arithmetic caleulation.

. Load the data into the mData data structure and collate
all data points together using the PyG data set data
structure,

. Define the model architecture using PyTorch and load
the data points in batches from the data set for model
training
This workflow is nearly identical to the method used for the

monolayers data set with differences only in steps 1 and 3;

therefore, the workflow for the monolayers data set was not

discussed.
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B RESULTS AND DISCUSSION

With a 80—20 training-testing split, the IEGNN possessed a
mean absolute percent error (MAPE) approximately 5%
smaller than the random forest model previously used for
predicting the tribological properties of monolayers (see Table
1 for a summary of performance results and Figure 2 for a
comparison of model architecture).

Table 1. Overview of the Model Performance on Test Set
for the Various Data Sets Described”

random
data set forest’ IEGNN  IGNN  IMLP
simple - 0000106 00661  —
SASA - 0.0362 00440 —
menoliyers (50:50) 00196 0.0389 00582 D.0807
(COF)
monolayers (25:74) 00505 0.0460 00604 00881
(COF)
monolayers (all) (COF) 0.0230 0.0308 00601 0.0855
monolayers ($0:30) (F,) 0150 0.141 0,396 01,630
menolayers (25:75) (F;) 0.245 0.198 0.378 0.773
monolayers (all) (F,) 07 0.165 0368 0624

“Model performance is measured in MAPE. Comparison of the test
set performance to previous models on the monolayer, with the best-
performing bolded.

Unsurprisingly, the IEGNN and IGNN were able to achieve
an extremely small MAPE of 0.000106 and 00661 on the
simple data set, meaning that the models were effectively
learning basic interactional properties of materials, both with
and without coordinate features. This is an unsurprising result
since the graph structures supplied as inputs to both models
contain the number of atoms implicitly by the number of
nodes in the graph.

The IEGNN was able to estimate the SASA with 82.3% of
the MAPE compared to the IGNN. This result is unsurprising
because the SASA is highly dependent on the conformation of
the molecule, which can only be described by the coordinate
features of the molecule.

In addition to the graph-based models, we compared the
performance of a nongraph-based model, the interactional
MLP (IMLP), to determine the effects of including the
molecular graph as inputs. The inclusion of the graph structure
as the input for the prediction of Fy resulted in 22.3 and 62.9%
of the MAPE for the IEGNN and IGNN, respectively, when
compared to the IMLP model. This reduction in MAPE with
the addition of graph structures demonstrated the importance
of including the molecular graph for the development of
QSPRs.

hittpsy/dalong/10.0021 facs. jpcb.3c07 304
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Figure 4. Predicted vs simulated tribological values (COF and F;) for the herein developed IEGNN model and the previously developed random
forest model. All values were taken at random from the training sets. The dashed diagonal line corresponds to a perfect prediction, meaning the
greater the deviation from the line, the greater the error. The two columns (a—c,g—i) correspond to predictions made with the IEGNN model,
whereas the other two columns (d—fj=1) correspond to predictions made with the random forest model. The row (a,d,gj} corresponds to training
using the 50:50 data subset. The row (b,e,h,k) corresponds to the data 25:75 subset. The row {c,fil) corresponds to the full training data set. The
first two columns (a—f) are for the COF, and the last two columns (g=1) are for the Fy
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Figure 3. (a) IEGNN prediction of COF from the monolayer screening data set. (b) IGNN prediction of COF from monolayer data set. This plot
shows the IGNN's inaccuracy in predicting values with lower F; in the data set and the importance of including spatial features when making QSPR

predictions.

More accurate QSPR models would lead to improved
screening surveys of molecules, which, in tum, would reduce
the cost of material or chemical selection. In addition, the
IEGNN's separate treatment of molecule inputs enables the
screening of molecule pairs that are conditional on one of the
maolecules. This ability would enable the selection of materials
given the known presence of another molecule. If it is verified
that the model learns information about each graph
independently, then it would mean that different molecular
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interactions of the same molecule could be used to infer
information about other interactions.

Random Forest Compared to the Interactional E(n)
Graph Neural Network. The primary difference between the
random forest model and the IEGNN is the inclusion of the
raw spatial/atomic and bond features. The random forest is
reliant on an encoding of this information into a vectorized
representation, which may limit the patterns between data
points that can be learned. The IEGNN is found to outperform
the tribological prediction of the previous model for four of six
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A Phys. Chem, § 2024, 128, 1108-1117



The Journal of Physical Chemistry B

pubs.acs.org/JPCB

data sets (see Figure 4 for a visualization of performance and
Table 1 for quantitative comparison of performance ). Notably
the IEGNN consistently outperforms the previous random
forest model in the prediction of F, but not the COF. This
suggests that Fy is more dependent on the spatial and
geometrical features of the molecule since this is the major
difference between the random forest and the graph-based
models. Since Fj is a result of the attractive forces between the
malecules, as shown in the work of Summers et al,*' this
property may be more easily derived purely from the chemical
structure. The COF however is a transport property, more
aligned with the shape of the terminal groups.”’ It therefore
may be more difficult for a medel to capture shape information
without additional training and/or data.

Inclusion of E(n) Features. To gain a deeper under-
standing of the impact of coordinate features on the model's
accuracy, an experiment was conducted where a separate
model with the identical architecture as the IEGNN was
trained, but this time, without incorporating the atomic
coordinates (see Figure 5). With the inclusion of coordinate
features, the model was able to make predictions for the F; of a
50:50 monolayer system with 35.6% the error of the same
model without atomic coordinates. These results suggest that
the 3D spatial features are important for the prediction of
tribological properties. This result also suggests that the
IEGNN is able to learn spatial features not explicitly included
in the molecular “fingerprint”.

Inclusion of Graph Structures. To gain a deeper
understanding of the impact of the inclusion of molecular
graph information on the model'’s accuracy, a separate model
was trained with the same vector concatenation of features
between end groups but this time using a MLP, called the
IMLP, as the molecular encoder. With the inclusion of graph
structural information, the model was able to make predictions
of the COF of a F; monolayer system with 22.4% the error of
the same model without the molecular graph structure. These
results suggest that the use of graph-based models are
important for the accurate prediction of tribological properties.

W CONCLUSIONS

We developed an E(n) equivariant graph convolution-based
ML model, IEGNN, for the prediction of properties that result
from the interaction of multiple molecular structures. To
benchmark the model’s ability to predict interactional
properties, we curated data for three different interactional
properties, with varying degrees of interactional complexity.
While for the first two data sets, the connection between the
property and structure is more clear, the final data set consisted
of an unknown interactional relationship, namely, the frictional
properties resulting between monolayers of variable composi-
tions. The IEGNN model developed was found to have the
lowest MAPE for four of six of the tribological data sets
considered, when compared to previous methods applied to
the same data. We determined the performance of the model
with and without spatial features and graph-based ML models,
with the conclusion that the inclusion of spatial features and
molecular graph features significantly improves property
prediction (see Table 1 for details). To load the inputs
needed for the multi-input graph model, we implemented a
PyG data set using a custom data point data structure that we
made publicly available for further model development. To
enable the loading of these data sets, we also created an open-
source data structure based on the PyG library for batch

1115

loading of multigraph data peints. Finally, we created the
[EGNN to estimate the interactional properties from the data
sets. The creation of the IEGNN architecture enables a new
equivariant graph-based method for property prediction that
can be used to learn properties that result from interactional
information for different molecules. By incorporating spatial
features and constraining the functions learned from these
features to be equivariant to E(n) symmetries, the IEGNN was
able to efficiently learn from 3D molecular structures of
multiple molecules.
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“The code for the IEGNN model and the custom multigraph
input PyG data set can be found at https://github.com/
kierannp/IEGNN.

B REFERENCES

(1) Ruddigkeit, L.; Van Deursen, B; Blum, L. C; Reymond, J.-L.
Enumeration of 166 billion organic small molecules in the chemical
universe database GDB-17. |. Chem_ Inf. Model. 2012, 52, 28642875

(2) Le, T; Epa, V. C.; Burden, F. B; Winkler, D. A. Quantitative
Structure=DProperty Relationship Modeling of Diverse Materials
Properties. Chem. Rev. 2012, 112, 2889=1919.

(3) Quach, C. D; Gilmer, J. B; Pert, D; Mason-Hogans, A;
lacovella, C. R; Cummings, P. T; M'Cabe, C. High-throughput
screening of tribological properties of monolayer films using
molecular dynamics and machine learning. | Chem. Phys. 2022,
156, 154902,

(4) Yao, X; Panaye, A; Doucet, ].-P.; Zhang, R.; Chen, H.; Liu, M,;
Hu, Z; Fan, B. T. Comparative study of QSAR/QSPR correlations
using support vector machines, radial basis function neural networks,
and multiple linear regression. | Chem. Inf Comput. Sci. 2004, 44,
1257=1266.

(5) Butler, K. T; Davies, D. W.; Cartwright, H.; Isayev, O.; Walsh,
A Machine learning for molecular and materials science. Nature 2018,
5359, 547-555.

(6) Lu, H.; Diaz, D. ].; Czamecki, N. J.; Zhu, C.; Kim, W.; Shroff, R.;
Acosta, D ]; Alexander, B. B; Cole, H. O; Zhang, Y; et al. Machine
learning-aided engineering of hydrolases for PET depolymerization.
Nature 2022, 604, 662—667.

(7) Gomez-Bombarelli, R; Wei, J. N;; Duvenaud, [; Herndndez-
Lobato, ]. M.; Sinches-Lengeling, B; Sheberla, D; Aguilera-
Iparraguirre, ]; Hirzel, T. D; Adams, B P; Aspuru-Guzik, A
Automatic chemical design using a data-driven continuous repre-
sentation of molecules. ACS Cent. Sci. 2018, 4, 268-276.

(8) Klambauer, G.; Unterthiner, T.; Mayr, A; Hochreiter, S.
DeepTox: toxicity prediction using deep learning. Toxicol Lett 2017,
280, 569.

(9) Boobier, S; Hose, D. B.; Blacker, A. ].; Nguyen, B. N. Machine
learning with physicochemical relationships: solubility prediction in
organic solvents and water. Nat. Commun. 2020, 11, 5753,

(10) Stokes, . M.; Yang, K.; Swanson, K,; Jin, W.; Cubillos-Ruiz, A.;
Donghia, N. M.; MacMair, C. RB; French, §; Carfrae, L. A; Bloom-
Ackermann, Z; et al A deep learning approach to antibiotic
discovery. Cell 2020, 180, 688=702.e] 3.

(11) Gao, X; Wang, Z; Dai, K;; Wang, T. A quantitative structure
tribo-ability relationship model for ester lubricant base oils. J. Tribol.
2015, 137, 021801,

(12) Wang, T; Wang, Z; Chen, H.; Dai, K; Gao, X. BPNN-QSTR
models for triazine derivatives for lubricant additives. [. Tribol. 2020,
I42, 011801,

(13) Argatov, L Artificial neural networks (ANNs) as a novel
modeling technique in tribology. Front. Mech. Eng. 2019, 5, 30.

(14) Batzner, 5.; Musaelian, A; Sun, L; Geiger, M.; Mailoa, ]. P;
Kornbluth, M.; Molinari, N.; Smidt, T. E; Kozinsky, B. E(3)-
equivariant graph neural networks for data-efficient and accurate
interatomic potentials. Nat. Commum. 2022, 13, 2453,

(15) Satorras, V. G.; Hoogeboom, E; Welling, M. E{n) equivariant
graph neural networks. 2021, arXiv:2102.09844.

(16) Wang, Y.; Zhao, Y.; Zhang, Y.; Derr, T. Collaboration-Asware
Graph Convolutional Network for Recommender Systems. Proceedings of
the ACM Web Conference, 2023,

(17) Do, K; Tran, T.; Venkatesh, 5. Graph Transformation Policy
Metwork for Chemical Reaction Prediction. 2018, arXiv:1812.09441.

(18) Sun, F; Sun, ].; Zhao, Q. A deep learning method for predicting
metabolite-disease associations via graph neural network Briefings
Bioinf. 2022, 23, bbac2é6.

(19) Wang, Z;; Chen, T.; Ren, ].; Yu, W,; Cheng, H; Lin, L. Deep
Reasoning with Knowledge Graph for Social Relationship Understanding.
International Joint Conference on Artificial Intelligence, 2018,

11e

(20) Zheng, C.; Fan, X; Wang, C; Qi, ]. Gman: A graph multi-
attention network for traffic prediction. 2020, 34, 1234-1241,
arXiv: 191 1.08415.

(21) Rogers, D; Hahn, M. Extended-connectivity fingerprints. [
Chem. Inf Model. 2010, 50, 742=T754.

(22) Weininger, D. SMILES, a chemical language and information
system. 1. Introduction to methodology and encoding rules. J. Chem.
Inf. Comput. Sci. 1988, 28, 31=36.

(23) Krenn, M; Hise, F.; Nigam, A; Friederich, P.; Aspuru-Guzik,
A. Self-referencing embedded strings (SELFIES): A 100% robust
molecular string representation. Mach. Leam.: Sci. Technol 2020, 1,
045024.

(24) Toropov, A; Toropova, A; Martyanov, S; Benfenati, E.; Gini,
G.; Leszczynska, D.; Leszczynski, . Comparison of SMILES and
maolecular graphs as the representation of the molecular structure for
QSAR analysis for mutagenic potential of polyaromatic amines.
Chemom. Intell. Lab. Syst. 2011, 109, 94=100.

(25) Gilmer, J; Schoenholz, 8. §.; Riley, P. F;; Vinyals, O; Dahl, G.
E. Neural Message Passing for Quantum Chemistry. International
Conference on Machine Learning, 2017; pp 1263=1272.

(26) Hamilton, W. L.; Ying, R; Leskovec, ]J. Inductive
Representation Learning on Large Graphs. 2017, arXiv:1706.02216.

(27) Velitkovig, P.; Cocurull, G.; Casanova, A.; Romero, A.; Lid, P.;
Bengio, Y. Graph Attention Networks. Infernational Conference on
Learning Representations, 2018,

(28) Kipf, T. N.; Welling, M. Semi-Supervised Classification with
Graph Convolutional Networks. 2016, arXiv:1609.02907.

(29) Smidt, T. E. Euclidean symmetry and equivariance in machine
learning. Trends Chem. 2021, 3, 82-85.

(30) Blum, L; Torruella, A. . Invariant Expansion for Two-Body
Correlations: Thermodynamic Functions, Scattering, and the
Omstein—Zernike Equation. J. Chem. Phys. 1972, 56, 303—310.

(31) Blum, L. Invariant Expansion. I The Ormnstein-Zernike
Equation for Nonspherical Molecules and an Extended Sclution to
the Mean Spherical Model. J. Chem. Phys. 1972, 57, 1862—1869.

(32) Blum, L. Invariant expansion III: The general solution of the
mean spherical model for neatral spheres with electostatic
interactions. J. Chem. Phys. 1973, 58, 3295—3303.

(33) Gray, C. G; Gubbins, K. E. Theory of Molecular Fluids; Oxford
University Press, 1984.

(34) Yu, B; Yin, H; Zhu, Z. Spatio-temporal Graph Convolutional
Meural Network: A Dieep Learning Framework for Traffic Forecasting.
2017, arXiv:1709.04875.

(35) Deac, A; Huang, Y.-H.; Velickovic, P; Lio", P.; Tang, |. Drug-
Drug Adverse Effect Prediction with Graph Co-Attention. 2019,
arXiv:1905.00534.

(36) Xu, N; Wang, P; Chen, L; Tae, |; Zhao, ]. MR-GNN: Multi-
Resolution and Dual Graph Neural Network for Predicting Structured
Enli‘l‘}' Interactions. 2019, arXiv:1905.09558.

(37) Vaswani, A; Shazeer, N.; Parmar, N; Uszkoreit, ].; Jones, L;
Gomez, A. N.; Kaiser, L.; Polosukhin, I. Attention is All You Need.
Adv. Newral Inf. Proc. Spst. 2017, 30, 6000=-6010.

(38) Klein, C.; Sallai, J; Jones, T. ]; lacovella, C. R.; M‘Cabe, C;
Cummings, P. T. In Foundations of Melecular Modeling and Simulation:
Select Papers from FOMMS 2015; Snurr, R (., Adjiman, C. 5, Kofke,
D. A, Eds; Springer: Singapore, 2016; pp 79=92.

(39) Landrum, G.; et al. RDKit: A software suite for
cheminformatics, computational chemistry, and predictive modeling.
Greg Landrum 2013, 8, 31.

(40) Mitternacht, 5. FreeSASA: An open source C library for solvent
accessible surface area caloulations. F1000Research 2016, 5, 189,

(41) Summers, A. Z,; Gilmer, J. B; lacovella, C. R; Cummings, P.
T.; M“Cabe, C. MoSDeF, a Python framework enabling large-scale
computational screening of soft matter: Application to chemistry-
property relationships in lubricating monolayer films. J. Chem. Theory
Cﬂmput 2020, 16, 1779-1793.

(42) Yu, B; Qian, L; Yu, J; Zhou, Z. Effects of Tail Group and
Chain Length on the Tribological Behaviors of Self-Assembled Dual-

hitps:{dolong/ 101021 /2cs. jpck. 3007304
1 Phys. Chem. B 2024, 128, 1108=1117



The Journal of Physical Chemistry B

pubs.acs.org/JPCE

Layer Films in Atmosphere and in Vacuum. Tribol Lett. 2009, 34, 1-
100

(43) Tambe, N. S; Bhushan, B. Nanotribological Characterization of
Self-Assembled Monolayers Deposited on Silicon and Aluminium
Substrates. Nanotechnology 2005, 16, 1549=1558.

(44) Brewer, N. J; Beake, B. D.; Leggett, G. J. Friction Force
Microscopy of Self-Assembled Monolayers: Influence of Adsorbate
Alkyl Chain Length, Terminal Group Chemistry, and Scan Velocity.
Langmuir 2001, 17, 1970=1974.

(45) Bhushan, B,; Sundararajan, 5. Micro/Nanoscale Friction and
Wear Mechanisms of Thin Films Using Atomic Force and Friction
Force Microscopy. Acta Mater. 1998, 46, 3793=3804.

(46) Lewis, J. B; Vilt, S. G.; Rivera, |. L; Jennings, G. K.; M‘Cabe,
C. Frictional Properties of Mixed Fluorocarbon/Hydrocarbon Silane
Monolayers: A Simulation Study. Langmuir 2012, 28, 14218=14226.

(47) Summers, A. Z.; lacovella, C. B; Cummings, P. T; M‘Cabe, C.
Investigating alkylsilane monolayer tribology at a single-asperity
contact with molecolar dynamics simulation. Langmuir 2017, 33,
11270=11230.

(48) Fey, M; Lenssen, ]. E. Fast Graph Representation Learning
with PyTorch Geometric. 2019, arXiv:1903.02428.

(49) Paszke, A; et al PyTorch: An Imperative Style, High-
Performance Deep Learning Library. 2019, arXiv:1912.01703.

117

hittps./fdalong/10.0021 facs.jpch 3007304
A Phys. Chem. B 2024, 128, 1108-1117



