Deep Learning
-
Eosinophils Instance Object Segmentation on Whole Slide Imaging Using Multi-label Circle Representation
Yilin Liu, Ruining Deng, Juming Xiong, Regina N. Tyree, Hernan Correa, Girish Hiremath, Yaohong Wang, and Yuankai Huo. “Eosinophils Instance Object Segmentation on Whole Slide Imaging Using Multi-label Circle Representation.” Proceedings of SPIE Medical Imaging 2024: Digital and Computational Pathology, vol. 12933, 129330I, 2024. Eosinophilic esophagitis (EoE) is… Read MoreJun. 20, 2024
-
All-in-SAM: From Weak Annotation to Pixel-wise Nuclei Segmentation with Prompt-based Finetuning
Can Cui, Ruining Deng, Quan Liu, Tianyuan Yao, Shunxing Bao, Lucas W. Remedios, Bennett A. Landman, Yucheng Tang, and Yuankai Huo. “All-in-SAM: from Weak Annotation to Pixel-wise Nuclei Segmentation with Prompt-based Finetuning.” Journal of Physics: Conference Series, vol. 2722, 2023, The 4th Asia Conference on Computers and Communications (ACCC… Read MoreJun. 20, 2024
-
A deep neural network estimation of brain age is sensitive to cognitive impairment and decline
Yang, Y., Sathe, A., Schilling, K., Shashikumar, N., Moore, E., Dumitrescu, L., Pechman, K. R., Landman, B. A., Gifford, K. A., Hohman, T. J., Jefferson, A. L., & Archer, D. B. (2024). A deep neural network estimation of brain age is sensitive to cognitive impairment and decline. Read MoreApr. 22, 2024
-
Lung CT harmonization of paired reconstruction kernel images using generative adversarial networks
Krishnan, A. R., Xu, K., Li, T. Z., Remedios, L. W., Sandler, K. L., Maldonado, F., & Landman, B. A. (2024). Lung CT harmonization of paired reconstruction kernel images using generative adversarial networks. Medical Physics. https://doi.org/10.1002/MP.17028 In a study focused on the harmonization of reconstruction kernels in… Read MoreApr. 22, 2024
-
Tradeoffs in alignment and assembly-based methods for structural variant detection with long-read sequencing data
Liu YH, Luo C, Golding SG, Ioffe JB, Zhou XM. Tradeoffs in alignment and assembly-based methods for structural variant detection with long-read sequencing data. Nat Commun. 2024 Mar 19;15(1):2447. doi: 10.1038/s41467-024-46614-z. PMID: 38503752; PMCID: PMC10951360. Researchers have systematically evaluated a range of tools designed to detect structural variants (SVs)… Read MoreApr. 16, 2024
-
Cross-scale multi-instance learning for pathological image diagnosis
Deng R, Cui C, Remedios LW, Bao S, Womick RM, Chiron S, Li J, Roland JT, Lau KS, Liu Q, Wilson KT, Wang Y, Coburn LA, Landman BA, Huo Y. Cross-scale multi-instance learning for pathological image diagnosis. Med Image Anal. 2024 Feb 27;94:103124. doi: 10.1016/j.media.2024.103124. Epub ahead of print. Read MoreApr. 16, 2024
-
DeepN4: Learning N4ITK Bias Field Correction for T1-weighted Images
Kanakaraj P, Yao T, Cai LY, Lee HH, Newlin NR, Kim ME, Gao C, Pechman KR, Archer D, Hohman T, Jefferson A, Beason-Held LL, Resnick SM; Alzheimer’s Disease Neuroimaging Initiative (ADNI); BIOCARD Study Team; Garyfallidis E, Anderson A, Schilling KG, Landman BA, Moyer D. DeepN4: Learning N4ITK Bias Field… Read MoreApr. 16, 2024
-
Robust fiber orientation distribution function estimation using deep constrained spherical deconvolution for diffusion-weighted magnetic resonance imaging
Yao T, Rheault F, Cai LY, Nath V, Asad Z, Newlin N, Cui C, Deng R, Ramadass K, Shafer A, Resnick S, Schilling K, Landman BA, Huo Y. Robust fiber orientation distribution function estimation using deep constrained spherical deconvolution for diffusion-weighted magnetic resonance imaging. J Med Imaging (Bellingham). 2024… Read MoreApr. 16, 2024
-
Multichannel meta-imagers for accelerating machine vision
Zheng H, Liu Q, Kravchenko II, Zhang X, Huo Y, Valentine JG. Multichannel meta-imagers for accelerating machine vision. Nat Nanotechnol. 2024 Jan 4. doi: 10.1038/s41565-023-01557-2. Epub ahead of print. PMID: 38177276. The study introduces a novel “meta-imager” that combines high-speed, low-power optical components with a digital backend to enhance… Read MoreApr. 16, 2024