Deep Learning
-
Mapping Three-Dimensional Tumor Heterogeneity through Deep Learning Inference of Spatial Transcriptomics from Routine Histopathology: A Proof-of-Concept Comparative Study
Azher, Zarif L.; Srinivasan, Gokul; Yao, Keluo; Le, Minh-Khang; Lau, Ken S.; Kaur, Harsimran; Kolling, Fred; Vaickus, Louis; Lu, Xiaoying; Levy, Joshua J. “Mapping Three-Dimensional Tumor Heterogeneity through Deep Learning Inference of Spatial… Read MoreMar. 24, 2025
-
An inverse design framework for optimizing tensile strength of composite materials based on a CNN surrogate for the phase field fracture model
Gao, Yuxiang; Duddu, Ravindra; Kolouri, Soheil; Gupta, Abhinav; Prabhakar, Pavana. “An inverse design framework for optimizing tensile strength of composite materials based on a CNN surrogate for the phase field fracture model.” Composites Part A: Applied Science and Manufacturing, vol. 192, 2025, 108758, https://doi.org/10.1016/j.compositesa.2025.108758… Read MoreMar. 24, 2025
-
BrainWash: A Poisoning Attack to Forget in Continual Learning
Abbasi, Ali; Nooralinejad, Parsa; Pirsiavash, Hamed; Kolouri, Soheil. “BrainWash: A Poisoning Attack to Forget in Continual Learning.” Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2024, pp. 24057-24067, https://doi.org/10.1109/CVPR52733.2024.02271. Continual learning, a field within deep learning,… Read MoreMar. 24, 2025
-
Statistical Context Detection for Deep Lifelong Reinforcement Learning
Dick, J., Nath, S., Peridis, C., Benjamin, E., Kolouri, S., & Soltoggio, A. (2024). “Statistical Context Detection for Deep Lifelong Reinforcement Learning.” Proceedings of Machine Learning Research, 274, 1013-1031. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85219511357&partnerID=40&md5=44236f24c54c2e13e04ef41cc8a97b90 Context detection involves identifying different tasks within a continuous stream of data. Read MoreMar. 24, 2025
-
Super-resolution multi-contrast unbiased eye atlases with deep probabilistic refinement
Lee, Ho Hin; Saunders, Adam M.; Kim, Michael E.; Remedios, Samuel W.; Remedios, Lucas W.; Tang, Yucheng; Yang, Qi; Yu, Xin; Bao, Shunxing; Cho, Chloe; Mawn, Louise A.; Rex, Tonia S.; Schey, Kevin L.; Dewey, Blake E.; Spraggins, Jeffrey M.; Prince, Jerry L.; Huo, Yuankai; Landman, Bennett A. Read MoreJan. 28, 2025
-
Relating Students Cognitive Processes and Learner-Centered Emotions: An Advanced Deep Learning Approach
Ashwin, T.S.; Biswas, Gautam. “Relating Students Cognitive Processes and Learner-Centered Emotions: An Advanced Deep Learning Approach.” ACM International Conference Proceeding Series, 2024, pp. 575-584, https://doi.org/10.1145/3678957.3685751. Understanding how students regulate their learning, especially in open-ended learning environments, requires looking at… Read MoreJan. 28, 2025
-
Comparison and calibration of MP2RAGE quantitative T1 values to multi-TI inversion recovery T1 values
Saunders, Adam M.; Kim, Michael E.; Gao, Chenyu; Remedios, Lucas W.; Krishnan, Aravind R.; Schilling, Kurt G.; O’Grady, Kristin P.; Smith, Seth A.; Landman, Bennett A. “Comparison and calibration of MP2RAGE quantitative T1 values to multi-TI inversion recovery T1 values.” Magnetic Resonance Imaging, vol. 117,… Read MoreJan. 28, 2025
-
Vector field attention for deformable image registration
Liu, Yihao; Chen, Junyu; Zuo, Lianrui; Carass, Aaron; Prince, Jerry L. “Vector field attention for deformable image registration.” Journal of Medical Imaging, vol. 11, no. 6, 2024, 64001, https://doi.org/10.1117/1.JMI.11.6.064001. The purpose of this study is to improve the process of… Read MoreJan. 28, 2025
-
Deep multimodal fusion of image and non-image data in disease diagnosis and prognosis: a review
Cui, C., Yang, H., Wang, Y., Zhao, S., Asad, Z., Coburn, L. A., Wilson, K. T., Landman, B. A., & Huo, Y. (2023). Deep multimodal fusion of image and non-image data in disease diagnosis and prognosis: a review. Progress in Biomedical Engineering, 5(2), 22001. Read MoreDec. 16, 2024
-
Transforming medical imaging with Transformers? A comparative review of key properties, current progresses, and future perspectives
Li, J., Chen, J., Tang, Y., Wang, C., Landman, B. A., & Zhou, S. K. (2023). Transforming medical imaging with Transformers? A comparative review of key properties, current progresses, and future perspectives. Medical Image Analysis, 85, 102762. doi: 10.1016/j.media.2023.102762 Transformer, a recent advancement in deep… Read MoreDec. 16, 2024