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In this work, we present a stochastic variational calculation (SVM) of energies and wave functions of few
particle systems coupled to quantum fields in cavity QED. The spatial wave function and the photon spaces
are optimized by a random selection process. Using correlated basis functions, the SVM approach solves the
problem accurately and opens the way to the same precision that is reached the nonlight coupled quantum
systems. Examples for a two-dimensional trion and confined electrons as well as for the He atom and the H2

molecule are presented showing that the light-matter coupling drastically changes the electronic states.
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Strong coupling of cavity electromagnetic modes and
molecules creates hybrid light-matter states modifying
potential energy surfaces, charge states, and electronic
structure. The possibility of altering physical and chemical
properties by coupling to light attracted intense experimental
[1–12] and theoretical interest [13–49]. The experimental
investigations are overarching exciton transport [1,3], polar-
iton condensation [2,9], transfer of excitation [6], and
chemical reactivity [50]. The theoretical works explored
excitation and charge transfer [20], self-polarization [36],
potential energy surfaces [24] electron transfer [38], excitons
[27], ionization potentials [34], and intermolecular inter-
actions [35] in cavities, to name a few.
For atoms and molecules in a vacuum, high precision

measurements and theoretical calculations have been
developed. The accuracy of theoretical prediction [51]
and experimental measurement [52] reaches the level of
1 MHz for the dissociation energy of the H2 molecule. The
theoretical description of the light-matter states is far from
this accuracy. The main reason behind this is that the
accurate wave function methods developed in quantum
chemistry are computationally expensive even before an
additional degree of freedom (light) is added, and the
density functional theory [53] calculations lack suitable
functionals for light-matter coupling. Initial developments
have been started in both directions [19,22,26,32,34,37].
In this work, we use the stochastic variational calculation

(SVM) to build optimized light-matter coupled wave
function (WF). By selecting the best light-matter coupled
basis states, the SVM produces highly accurate energies
and WFs. The precision can reach the same level as the
conventional nonlight-coupled quantum chemistry calcu-
lations. The stochastic selection keeps the basis dimension
and the computational cost manageable by avoiding the
high-dimensional tensor product spaces. The SVM works
for strong coupling and can go beyond a single photon

mode using correlated basis functions, while other
approaches are limited to very weak couplings, a single
photon mode, or use mean-field or model Hamiltonians.
We will show that the light-matter coupled WFs are

drastically different from the noncoupled electronic WFs
and the emerging features cannot be explained by the
electronic plus the dipole self-interaction Hamiltonian (that
acts on the spatial part of the WF) alone. The WF
components in different photon subspaces are very different
showing well-separated density peaks in systems that were
spherically symmetric before coupling to light. By chang-
ing the coupling strength or adding more than one photon
modes a certain subspace can be dominant and these exotic
density distributions might be experimentally observable.
The spatial WFs will be represented by explicitly corre-

lated Gaussian (ECG) basis functions [54]. The advantage of
the approach is that the matrix elements are analytically
available [55–57] and it allows very accurate calculations of
energies and WFs [54,58–63].
We assume that the system is nonrelativistic and the

coupling to the light can be described by the dipole
approximation. The Pauli-Fierz (PF) nonrelativistic QED
Hamiltonian provides a consistent quantum description at
this level [21,25,38,46,64]. The dipole approximation
assumes that the spatial variation of the electric field is
negligible across the size of the system, and this is valid
if the system size is much smaller than the wavelength of
the light. The PF Hamiltonian in the Coulomb gauge is
H ¼ He þHep whereHe is the electronic Hamiltonian and

Hep¼
XNp

α¼1

�
ωα

�
âþα âαþ

1

2

�
−ωαqαλ⃗αD⃗þ1

2
ðλ⃗α D⃗Þ2

�
; ð1Þ

(atomic units are used in this work). In Eq. (1) D⃗ is
the dipole operator, the photon fields are described by
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quantized oscillators, and qα ¼ ð1= ffiffiffiffiffiffiffiffi
2ωα

p Þðâþα þ âαÞ is the
displacement field. This Hamiltonian describes Np photon

modes with photon frequency ωα and coupling λ⃗α. The
coupling term is written as [65] λ⃗α ¼

ffiffiffiffiffiffi
4π

p
Sαðr⃗Þe⃗α, where

Sαðr⃗Þ is the cavity mode function at r⃗ and e⃗α is the
transversal polarization vector of the photon. The first term
in Eq. (1) is the Hamiltonian of the photon modes, the
second term couples the photons to the dipole, and the last

term is the dipole self-interaction, Hd ¼ 1
2

PNp

α¼1 ðλ⃗α D⃗Þ2.
The Hamiltonian of an N electron system confined in an

external potential Vc is

He ¼ −
XN

i¼1

∇2
i

2mi
þ
XN

i<j

qiqj
jri − rjj

þ
XN

i¼1

VcðriÞ; ð2Þ

where ri, qi, andmi are the coordinate, charge, and mass of
the ith particle.
Introducing the notations r⃗ ¼ ðr1;…; rNÞ, and jn⃗i ¼

jn1ijn2i;…; jnNp
i where nα is the number of photons in

mode α, the variational WF is written as a linear combi-
nation of products of spatial and photon basis functions

Ψðr⃗Þ ¼
X

n⃗

XKn⃗

k¼1

cn⃗kψ
n⃗
kðr⃗Þjn⃗i: ð3Þ

The spatial part of the WF is expanded into ECGs for
each photon state jn⃗i as

ψ n⃗
kðr⃗Þ ¼ Afe−1

2

P
N
i<j

αkijðri−rjÞ2−1
2

P
N
i¼1

βki ðri−ski Þ2Λðr⃗ÞχSg ð4Þ

where A is an antisymmetrizer, χS is the N electron spin
function (coupling the spin to S), and αkij, β

k
i , and ski are

nonlinear parameters.
The dipole self-interaction introduces a nonspherical

term into the Hamiltonian. The solution of this nonspheri-
cal problem is difficult and slowly converging using
angular expansions. We introduce Λðr⃗Þ ¼ er⃗Ur⃗ in Eq. (4)
to eliminate the dipole self-interaction term Hd from
Eq. (1). U is a 3N × 3N matrix with elements chosen to
cancel the dipole self-energy [66]. The matrix elements can
be analytically calculated for both the spatial [54,55] and
the photon parts and the Hamiltonian and overlap matrices
are very sparse matrices [66].
We will optimize the basis functions selecting the best

spatial basis parameters and photon components using the
SVM. In the SVM, the basis functions are optimized by
randomly generating a large number of candidates and
selecting the ones that give the lowest energy [54,55,67].
The size of the basis can be increased by adding the best
states one by one and a K-dimensional basis can be refined
by replacing states with randomly selected better basis
functions. The details of the SVM selection are given in [66].

In Fig. 1(a) we show an example for the energy
convergence of a two-dimensional trion (two electrons
and a hole) coupled to two photon modes using the SVM
with Kn⃗ ¼ 40 basis vectors in each photon state. Initially
the photon space jn1ijn2i is restricted by n1 þ n2 < 4. First
the j0ij0i space is optimized by adding basis functions
selected by the SVM one by one. Then the j1ij0i space is
added and populated by the SVM and this process is
repeated for each allowed photon space. The energy
quickly converges in the photon spaces and the energy
gain is less and less as higher photon numbers are added.
Next, the WF is optimized further with a refining step [66],
where the basis is improved by randomly replacing
photon spaces with energetically more favorable ones. In
this step, the photons can also couple photon spaces with
n1 þ n2 ≥ 4. As the dashed line in Fig. 1(a) shows, this step
significantly improves the energy.
To test the accuracy of the approach we have compared

the converged energies to a one-electron one-photon
problem which can be solved numerically [22,40,41].
The SVM and exact diagonalization energies agree up to
five digits for the lowest five states [66]. Figure 1(b) shows
photon occupations for a very strong coupling case. The
SVM and the exact diagonalization results are in very good
agreement.
We use a harmonically confined (VcðrÞ ¼ 1

2
ω2
cr2) two-

dimensional (2D) two-electron system coupled to two
photon modes as a second test case, because this problem
is analytically solvable [68]. Using ωc ¼ 1 a:u: for
the harmonic confinement, ω1 ¼ 1, ω2 ¼ 1 a:u: for the
photon frequencies, and λ⃗1 ¼ ð1; 1Þ, λ⃗2 ¼ ð−1;−1Þ a:u:
for the coupling, the exact energy of the system is
E ¼ 3.654 00 a:u. This choice corresponds to a diago-
nally polarized light and mode functions Sαðr⃗Þ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2=ALÞp

sinðkαxÞ where L is the length, AL is the volume
of the cavity, and kα ¼ απ=L is the wave vector (α ¼ 1, 2).
Our system is placed at the center of the cavity, x ¼ L=2
and λ⃗2 ¼ −λ⃗1. The calculated energy E ¼ 3.654 01 a:u: is
in perfect agreement with the analytical value and the
photon space probabilities also agree [66].
Next we study a 2D three electron system in harmonic

confinement (ωc ¼ 1=3 a:u:) coupled to photon mode of

0 50 100 150 200 250 300
K

6.6

6.8

7.0

7.2

E

|0>|0>

|1>|0>

|0>|1>

|1>|1>
|2>|0>

|0>|2> |2>|1>

82.0

4.9

6.5

2.0
1.7

0.7 0.7

(a)

0 5 10 15 20
n

0

0.05

0.1

0.15

P
n

(b)

FIG. 1. (a) Energy convergence of the SVM calcula-
tion. (b) Photon space occupations for the ground state with
λ⃗ ¼ ð0.5; 0.5Þ a:u:, solid line: SVM, dashed line: exact diago-
nalization.
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ω1 ¼ 2 and λ⃗1 ¼ ð4; 4Þ. Without coupling to the light the
electron density of these systems is spherically symmetric.
The S ¼ 1=2 density has a peak in the center, while the
S ¼ 3=2 system forms a ringlike structure due to the Pauli
repulsion between the spin-polarized electrons [66].
The electron density is shown in Fig. 2 for S ¼ 1=2 and
S ¼ 3=2with a very different structure for the coupled case.
The density peak in the S ¼ 1=2 case breaks up into two
peaks and the S ¼ 3=2 ring also splits into two parts. This
shows how strongly the light-matter coupling can change
the electron density of the system. Figures 2(c) and 2(d)
show the photon distribution for this system when it is
coupled to two photon modes. When the coupling strength
of the two modes are equal then the lower frequency mode
(ω1) is more occupied [Fig. 2(c)] because more photons are
needed to couple the energy levels. The checkerboard
structure is explained by the dependence of the coupling
strengths on the parity of the sum of the photon numbers in
the two modes (if n is the number of photons in ω1 andm is
the number of photons in ω2 mode, then nþm is even or
odd). By increasing the coupling strength of the second
mode (ω2) the occupations can be changed and the photon
occupations will be higher in ω2 than in ω1 [Fig. 2(d)].
Photon states with very small occupations (< 10−10) do not
significantly contribute to the energy and structure of
the system.
The next example is a trion [69–72], two electrons and a

hole in 2D coupled to a one-photon mode and two-photon
modes. The electron densities of the trion coupled to
one- and two-photon modes are shown in Figs. 3 and 4.
The figures show the density

ρn⃗ðr⃗Þ ¼
X3

i¼1

XKn⃗

j;k¼1

cn⃗j c
n⃗
khψ n⃗

j jδðri − rÞjψ n⃗
ki ð5Þ

belonging to photon state n⃗ and we also show the con-
tribution of the electrons and hole to the density.
Figures 3(a) and 4(b) show the density in the j0i and the

j0ij0i photon spaces. The total densities are very similar to
these densities because the j0i and j0ij0i photon spaces are
dominant (92% and 82% of the wave function belong to
these states). The weights of WF components in photon
spaces depend on the frequency and coupling, and by
changing these, other photon states (or linear combinations

FIG. 2. Electron density of a harmonically confined 2D three-
electron system (ω ¼ 2 and λ ¼ 4) (a) S ¼ 1=24, (b) S ¼ 3=2.
Photon distribution (logarithm of the occupation probability) for
two photons modes in the 2D three-electron system, S ¼ 1=2,
ω1 ¼ 1=2ω2 ¼ 1; (c) λ⃗1 ¼ ð5; 5Þ, λ⃗2 ¼ ð−5;−5Þ, (d) λ⃗1 ¼ ð5; 5Þ,
λ⃗2 ¼ ð−10;−10Þ. n is the number of photons in the ω1 mode and
m is the number of photons in the ω2 mode.

FIG. 3. Two electrons and a hole in 2D coupled to one photon
mode [ω1 ¼ 2, λ⃗1 ¼ ð4; 4Þ a:u:]. The left column [(a), (d), (g),
(j)] shows the total single particle density; the electron density is
in the middle [(b), (e), (h), (k)]; and the right column [(c), (f), (i),
(l)] shows the density of the hole. The first row belongs to the
photon space j0i, the second to j1i, the third to j2i, and the fourth
to j3i. The x axis is the horizontal, the y axis is the vertical
direction.

FIG. 4. Two electrons and a hole in 2D coupled to two photon
modes [ω1 ¼ 2, ω2 ¼ 4, λ⃗1 ¼ ð4; 4Þ, λ⃗2 ¼ ð−4;−4Þ a:u:] The
total single particle densities in photon space j0ij0i (a), j1ij0i (b),
j1ij1i (c), j2ij2i (d). The electron density in j2ij2i (e) and the
hole density in j2ij2i (f) are also shown. The x axis is the
horizontal, the y axis is the vertical direction.
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of photon states) become major contributors to the density.
The total densities are very similar to each other in the one-
and two-photon mode coupled cases [Figs. 3(a) and 4(b)];
they are slightly squeezed along the x ¼ −y diagonal axis.
Figures 3(b) and 3(c) show the electron and hole density

of the trion in the j0i photon space. The hole density is
circularly symmetric, the electron density is elongated and
the superposition of these two explains the structure seen in
Fig. 3(a). In the j1i photon space the density is elongated
[Fig. 3(d)] but now it is aligned in the direction of the x ¼ y
diagonal. This density is a superposition of two outside
hole peaks [Fig. 3(f)] and an electron in the middle
[Fig. 3(e)]. The j2i and j3i photon spaces are similar
[Fig. 3(g)]. The electron density not only has a peak in the
middle but also a bondlike structure toward the hole peaks.
The j3i photon space densities [Figs. 3(j), 3(k), and 3(l)] are
similar to the j0i ones, but now the total density has three
separate peaks.
In the trion coupled to the two-photon mode case (Fig. 4)

we keep ω1 and λ⃗1 the same as before and add a second
photon mode with ω2 ¼ 2ω1 and λ⃗2 ¼ −λ⃗1. The second
mode has stronger coupling because the frequency is larger.
We still see gradual elongation in higher photon spaces,
but the densities are quite different from the one-photon
mode case. The resulted linear combinations are shown in
Figs. 4(b), 4(c), and 4(d). The underlying electron and hole
densities still show somewhat similar structures to the one-
photon mode. For example, the total density in the j2ij2i
photon space [Fig. 4(d)] is the sum of the electron density
in the middle [Fig. 4(e)] and the two peaks of the hole
[Fig. 4(f)] outside.
Next, we study the energy as a function of the distance

between the nuclei in a three-dimensional H2 molecule
coupled to one- and two-photon modes. In this case, two
protons are fixed at a distance r and the energy is calculated
as a function of r. We have studied four cases, the four
energy curves, together with the ground state energy curve
are shown in Fig. 5(a). The energy of the system shifts up
by coupling to light, and the energy shifts higher when the λ⃗
coupling is larger. The effect of ω (not shown in the figure)
is much smaller. The shift in the two-photon mode case is
much larger because now two dipole self-interaction terms
increase the energy. The most interesting result is that by
increasing λ⃗ the energy minimum moves to much shorter
distances.
The last example is a spin singlet He atom with finite

nuclear mass [73,74] coupled to a single photon mode.
Figure 5(b) shows the lowest energy levels as a function of
λ⃗ ¼ ðλ; λ; 0Þ for ω ¼ 0.8 a:u. Besides the bound S, P, and
D states of the He atom, discretized continuum states are
also included for λ ¼ 0. The thick line shows the energy of
the dissociation threshold into Heþ ion plus an electron.
Figure 5(b) shows that even some continuum states will
become bound as λ increases. The figure also shows that

certain energy levels get very close to each other and then
they move away (avoided crossing). This energy level
repulsion is due to the fact that changing λ modifies the
potential shape which, in turn, drives up or down energy
levels but no degeneracy is introduced and the energy levels
cannot cross each other.
The role of ω is illustrated [see Fig. 5(c)] for the 21Se and

21Po energy levels. For ω ¼ 0.8 a:u:, the 21Po state moves
down, approaching the 21Se level at around λ ¼ 0.08 a:u:,
and then it moves up while the energy of the other state
decreases [and later increases as Fig. 5(b) shows]. In the
case of ω ¼ 0.4 a:u: the 21Se state moves up but the closest
distance between the two states (at around λ ¼ 0.12 a:u:) is
much larger than the size of the previous gap. In the
ω ¼ 0.2 a:u: case the two curves meet at λ ¼ 0.27 a:u.
These examples show that ω strongly influences the
position of the avoided crossing points and it also affects
the rise of the energy curves.
Figure 5(d) shows the energy levels at an even lower

coupling strength. In this case we have changed ω keepingffiffiffiffi
ω

p
=λ ¼ 23.45 fixed. In this way at ω ¼ E21Se − E21Po ¼

0.22 a:u: λ is 0.02 a.u. and the coupling strength is
proportional to ω as suggested in Ref. [42] to mimic the
Jaynes-Cummings model [75]. The box in the middle of
Fig. 5(d) shows the position where the 21Se and 21Po state
get close to each other at around the ω ¼ 0.22 a:u:
transition energy and at that point the energy difference
between them is 0.0055 a.u., which corresponds to a Rabi
splitting of 0.1496 eV in excellent agreement with the real
space grid based calculation (0.148 eV) in Ref. [42].
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FIG. 5. (a) Ground state energy of H2 as a function of bond
length (solid line) and energies of the H2 molecule coupled to
light. λ⃗i ¼ λið1; 1; 0Þ. (b) Energy of the lowest lying states of He
as a function of λ for ω ¼ 0.8 a:u: (c) Energy of the 21Se (starts at
−2.14 a:u:) and 21Po (starts at −2.12 a:u:) as a function of λ,
for ω ¼ 0.8 a:u: (solid lines), ω ¼ 0.4 a:u: (dashed lines) and
ω ¼ 0.2 a:u: (dotted lines). (d) Energy of states lying around the
21Se and 21Po as a function of ω (

ffiffiffiffi
ω

p
=λ is kept constant).
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