Creating More Efficient Solar Cells Using Mott Insulators V₂O₃ and LaVO₃

Erin Burgard¹, Jackson Bentley², Dr. Richard Haglund²

¹School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ ²Department of Physics and Astronomy, Vanderbilt University, Nashville, TN

Background

- Ordinary semiconductors do not efficiently harvest the short wavelengths in the solar spectrum
- In a Mott (strongly correlated) insulator, multiple electrons can be excited by a short wavelength photon
- Vanadium oxides are good Mott insulators

(J. Phys. Chem. C 2010, 114, 9, 3743-3747)

Objectives

- I. Create recipe for V₂O₃ and LaVO₃ (LVO) films
- II. Synthesize V_2O_3 samples with varying:
- Substrate
- Annealing conditions
- Deposition wattage
- III. Characterize V₂O₃ samples using:
- Atomic Force Microscopy: topography
- Raman Spectroscopy: composition
- Scanning Electron Microscopy: morphology

Can Mott insulators create more efficient solar cells due to multiple exciton generation?

100 W, Al₂O₃, not annealed

Results

Observations

Synthesis and characterization of sputtered vanadium metal target in low pressure oxygen followed by occasional annealing found:

- 50W power to the vanadium target during sputtering deposition is not enough to form a quasi-continuous thin film
- Annealing improves Raman shift, makes crystalline domains larger, and increases the roughness
- Film can grow on both Al₂O₃ and Si substrates
- V₂O₃ stoichiometry has not yet been achieved

Future Work

- XRD and EDS for quality V₂O₃ films
- Synthesize and characterize LaVO₂ films

Sub-Picosecond Response Time... Hallman et. al, Full Paper

 Measure change in conductivity as a function of laser energy with ultrafast experiments and V2O3 films

Acknowledgements

I gratefully acknowledge support from Jackson Bentley, Dr. Dmitry Koktysh, Dr. James McBride, Dr. Christina McGahan, Megan Dernberger, and Professor Richard Haglund.

I also acknowledge support from the NSF (NSF-DMR 1852157) and research funds from the College of Arts and Science.