

Water-Energy Nexus: Moving the People or Resources?

A hypothetical consideration of addressing sustainability

Vanderbilt Institute for Energy and Environment

Water For Energy By Source

D. Perrone, J. Murphy & G. Hornberger

INTRODUCTION

METHODS

Energy and water are inexplicably linked, yet rarely do communities collect enough of the appropriate data to understand how the connection may affect their community. The interrelated nature of these resources is even more evident when their supplies are scarce. We qualitatively describe communities that lack sufficient local water and energy resources for their demands as Resource Islands.

Resource Islands

· Resource Islands: Communities located considerable distances from their water and energy resources

· Ecological Definition: "Resource islands form when individual plants influence the surrounding soil to alleviate nutrient and temperature stress and foster seedling survival and growth" (Carrillo-Carcia et al 2000).

· Definitions are similar in terms of describing a more-livable micro-environment in an otherwise inhospitable desert ecosystem.

· Example: City of Tucson located in Arizona, United States of America

· Over 335 miles (540 km) from one of its main water sources and 200+ miles (320 km) from its power supplies (Figure 1).

Problem Statement

Geography (i.e. distance from available water and energy resources) and community size (i.e. demand) directly affect energy and water use. However, quantifying water-energy resource use is difficult to accomplish, much less comprehend, without a functional conceptual model. Current water-energy nexus models are not useful for city planning or community development as they call for data that are not typically collected by communities, inevitably using 'hypothetical' cities or data

2.) Enable communities to acquire a cursory understanding of the potential connectedness and impacts to water and energy use 3.) Indicate potential directions of

To develop a model using national and regional averages of

energy for water and water for

Project Objectives

energy consumption

1.)

energy for water and water for energy data collection

Use the City of Tucson, Arizona. USA as a case study to highlight the impact of geographic location. distance from water and energy resources

Figure 1: Tucson site map and Resource Island depiction.

Table 1: Characteristics of the City of Tucson, Arizona, USA

Location	 32°08'N, 110°57'W Southern portion of Arizona, USA (Figure 1) 			
Geography	 Basin and Range: broad desert valleys and small isolated mountain ranges Groundwater aquifers are small and often isolated from adjacent basins Located in the Tucson basin, a valley composed of alluvial fan sediments Santa Cruz River is adjacent to the City of Tucson, currently intermittent flow controlled by wastewater discharge 			
Climate	 Sun belt: Arid to semi-arid climate Low annual precipitation (approximately 27cm / year) Average temperature range from 52° to 85°F (11° to 30°C) 			
Population	 6.5% increase in population over the past 6 years 534,685 people, current population as of 2006 			
Demographics & Lifestyle	 96% of people live within metropolitan Tucson Approximately 71% of Tucson residents commute to work alone (compared to 75% U.S. nationally) 3 5% use multic transnortation 			

Figure 2: Water for Energy (left) and Energy for Water (right) **Conceptual Diagrams**

Table 2: Water for Energy Model Description

	Fuel Cycle	Transport	Electricity Production	Transmission
DESCRIPTION	Uses average water consumption for the processes needed to make the energy source consumable by users • Exploration • Extraction & mining • Recovery • Processing • Refining • Enrichment • Growing (biomass)	 Uses heat context of the transportation fuel, or pipeline efficiency, and distance to calculate the total amount of energy consumed for transport Calculates the water for the energy consumed in transport by using the energy source's water consumption in its fuel cycle Inherentlydeals with transport mode efficiency 	Uses sverage water consumption data for power plants based on their energy source and cooling technology Cooling towers consume -2X the water that none- through plants consume Does not incorporate geographical variations in plant consumption	Uses average transmission line losses and efficiencies to calculate the energy lost in transmission over distances Assumed end user does not alter energy, so no water is used by the end user for energy consumption
USER INPUT	Energy sources Coal, oil, natural gas, nuclear, renewables Amountof each source KWh/source/yr	Location of energy sources, electric generating plants, and community Distance between energy sources and electric plants or community Transport mode Transport mode Transport mode Distance/volume fuel Distance/volume fuel Pipeline efficiency	Energy sources Coal, oil, natural gas, nuclear, renewables Amountof each source KWh/source/yr Type of generating plant Energy sources used Cooling technology used	Transmission line distance from generating facility to community Transmission line efficiency
SOURCES	•(1994). "Water and Energy." <u>Annual</u> <u>Review of Energy and</u> the Environment 19: <u>267-299.</u>	Davis, S. C., S. W. Diegel, et al. (2009). <u>Transportation Energy Data</u> <u>Book.</u>	 Gleick, P. H. (1994). "Water and Energy." <u>Annual Review of Energy and the Environment</u> <u>19: 267-299.</u> 	Davis, S. C., S. W. Diegel, et al. (2009). <u>Transportation Energy</u> <u>Data Book.</u>

Table 3: Energy for Water Model Description

	Source	Treatment	Local Distribution	End User
DESCRIPTION	Energy used to retrieve water from the source area and moveit to treatment facility "Surface water (conveyance) • Groundwater (pumping) • Recycled water (collection) • Desalination (movement)	Energy used to treat water to usable a standards • Potable •Recycled	Energy used to distribute potable and recycled water to end users	Energy expended in the use of water by the 'End User' (e.g. heading)
USER INPUT	Water sources & volume / year Elevation of source Elevation of treatment facility Pump efficiency	Source of water Size of treatment plant Level of treatment Or type of technology	Average electricity used for distribution pumping Average electricity rate	Population of community
MODEL FRAMEWORK	• Surface water, groundwater & desaluation: general horsepower equation hp=(+0?H)(55Pre) Where: Q = flow (cubic feet per second) H = total head (feet) E = pump efficiency • Recycled water: Price for pumpting and electricity tate to infer average cost of collection	Energy intensity rates from published iterature for water treatment depending on source, technology and quantity treated. "Surface water (e.g. SBW Consulting, Inc 2006 Municipal Water Treatment Plant Energy Bascline Study Prepared for the Pacific Gas and Electric Company, Bellevae, WA p 55)	Conversion of electricity used for local pumping to KWh/AF: Ewp = Xe/Re Where: Ewp = Energy used for pumping (KWh/AF) Xe = Average electricity costs for distribution Re = Average electricity rate	KWh per person consumption based on California energy utility reporting. Source data: California Energy Commission, 2005 California's water energy relationship Final Staff Report Prepared in Support of the 2005 IEPR Proc. (Sacramento, CA) CEC-700-2005-011-SF

Table 4: Model Assumptions

Major Model Assumptions	Justification	Implications
No significant energy efficiency technological advances for the fuel cycle & electricity generation since the 1990's	Most detailed and recent data for energy used during production are from 1994 (Gleick)	If the new technology is more efficient, like it often is, the model will over-calculate consumptive water
National and regional averages approximate local scenarios	Water and energy data is often not reported or collected and very hard to track down	Results may be higher or lower than actual
Negligible water is lost through evaporation	Evaporative loss is suggested to be 2-3% (CAP) and quality	The total amount of water may be high if accounting for 'lost'
and leaky pipes	of local distribution system was not taken into account	water during transportation
Only the community's reported, direct water	This study does not address a life cycle approach so a cradle	Water and energy associated with construction and maintenance
and energy demands were used	to grave analysis was not needed	of equipment (water & energy) is not accounted for
Community is considered an incorporated	Boundaries are hard to define due to inconsistency in water	Results do not include suburbs or the surrounding metropolitan
city	and energy boundaries	area

RESULTS

Virtual water and energy resources (the amount of water used in the production of energy and the amount of energy used in the acquisition of water) were analyzed for Tucson, Arizona. Inclusion of virtual water for energy more than doubles the amount of water consumed by the City of Tucson (Figure 3). However, virtual energy used in the acquisition of water is an insignificant portion of the total energy used by the City of Tucson (Figure 4). For the case study, two scenarios were considered to address the hypothetical question of moving the people to the resources and the resources to the people for Tucson: Scenario 1 Current Conditions (i.e. moving the resources to the people) and Scenario 2 Hypothetical Conditions (i.e. moving the people to the resources) (Figures 5 and 6)

Figure 5: Tucson water for energy scenario analysis

Figure 4: Tucson energy demand

DISCUSSION

Virtual Energy

Electric Pow

The scenario analysis indicates that Tucson is a resource island. For virtual water and energy, transportation and extraction, respectively, are the most sensitive stages (Figure 5 and 6), confirming the reliance on distant resources to provide a more hospitable environment in an otherwise arid, resource-deprived desert. If the people were, hypothetically, moved to the resources, less water and energy would be consumed. Although the magnitude difference between scenario one and two is far greater for virtual energy, it only accounts for 1% of Tucson's total (virtual and actual) energy (Figure 4 and 6). End use is not important for water for energy considerations but it plays a significant, if not dominant, role in energy for water. Due to difficulties quantifying the end-use stage (e.g. heating water) of energy for water, this was not included in this case study. Rough estimates, however, approximated end-use virtual energy as three orders of magnitude higher than all other stages combined. International imports of energy materials were not considered in this study due to difficulty identifying source location. Including international import distances in the scenario analysis of water for energy would greatly increase the magnitude of scenario one through the transportation stage (Figure 5). Economies of scale may prove important when considering water and energy use and will be further investigated.

CONCLUSION

Although this model does not use site specific data, it has the potential to expose a community to the data collection needs of waterenergy analysis. The aim is to make communities more aware of the nexus so future planning can account for the intimate relationship between water and energy resources.

ACKNOWLDGEMENTS

This work was supported by the Vanderbilt Institute for Energy and Environment. We also thank the Departments of CEE & EES for their support.

Conceptual models were developed (Figures 2 & 3) and quantified according to various stages of energy and water use. Tables 2 and 3 describe the model by each stage and provide insight to the user input required for the model. Due to data constraints and difficulties defining conditions, various assumptions were made for the model (Table 4).