Available Technologies

ADDITIONAL FILTERS

Robotics

5 available technologies

Wireless Tissue Palpation for Minimally Invasive Robotic Surgery Techniques

Researchers in Vanderbilt University's STORM Lab have developed a wireless palpation device that uses magnetic coupling between two units to provide valuable feedback about tissue properties and potential abnormalities. The wireless capabilities of this technology make it ideally suited for minimally invasive surgery and natural orifice procedures, as the device does not require the use of a surgical port.

Local Magnetic Actuation for Obese And Pediatric Patients

Researchers in Vanderbilt University's STORM Lab have developed a novel actuation system that uses magnetic coupling to transmit mechanical power across a physical barrier. This technology is particularly suited for use in minimally invasive surgical procedures for manipulating surgical instruments across tissue barriers.

Steerable Needles: A Better Turning Radius with Less Tissue Damage

A team of Vanderbilt engineers and surgeons have developed a new steerable needle that can make needle based biopsy and therapy delivery more accurate. A novel flexure-based tip design provides enhanced steerability while simultaneously minimizing tissue damage. The present device is useful for almost any needle-based procedure including biopsy, thermal ablation, brachytherapy, and drug delivery.

Algorithms for Contact Detection and Contact Localization in Continuum Robots

This technology enhances the capabilities of continuum robots by not only detecting contact during movement but also estimating the position of the contact during the movements executed by the robot. An algorithmic feedback loop can then constrain the movement of the robot to avoid damage to its robot arm, damage to another robot arm or damage to surrounding structure. Applications for this technology include enhanced safe telemanipulation for multi-arm continuum robots in surgery, micro-assembly in confined spaces, and exploration in unknown environments.

Methods for Quick and Safe Deep Access into Mammalian Anatomy

This technology uses a novel continuum robot that provides a steerable channel to enable safe surgical access to the anatomy of a patient. This robotic device has a wide range of clinical application and is a significant advance from the rigid tools currently used in minimally invasive procedures.

Featured Video

Vanderbilt Patent Activity

View Vanderbilt University Patents

CTTC on Twitter