Available Technologies


Thin Films & Nanomaterials

17 available technologies

Ultrasonic Sensor for Non-intrusive Local Temperature, Transient Temperature and Heat Flux Measurements

An apparatus for measuring the temperature and heat flux of materials through the use of an ultrasonic sensor has been developed at Vanderbilt University. The sensor uses acoustic measurement techniques to determine the heat flux and temperature of material surfaces otherwise inaccessible in particular during system operation in order to enhance monitoring capabilities and reduce unsafe or impaired function due to extreme temperatures.

Gratings on Porous Silicon Structures for Sensing Applications

In this technology diffraction-based sensors made from porous materials are used for the detection of small molecules. The porous nature of the diffraction gratings that gives rise to an extremely large active sensing area enables a very high level of sensitivity. Specificity is achieved by functionalizing the porous gratings with selective binding species.

Direct Imprinting of Porous Substrates

This easily adoptable technology consists of an inexpensive and reproducible method to imprint micron and sub-micron features into porous materials by pressing a reusable stamp directly into the porous material. This method of direct imprinting (DIP™) has the potential to enable an entirely new class of low-cost porous nanomaterial based devices.

Free Standing Nanocrystal Thin Films

Vanderbilt researchers have developed a process that creates free standing nanocrystalline thin films using a simple, robust and cost- efficient process. This paves the way for manufacturing conformal films of nanocrystals at a fraction of the cost as compared to techniques currently used. The process could be applied in the manufacture of a number of end products such as solar cells supercapacitors, magnetic storage, semiconductor devices and catalysis.

Easy-to-Fabricate, Cost-Effective, and Stable Surface Enhanced Raman Scattering (SERS) substrates

Vanderbilt researchers have developed a Surface Enhanced Raman Scattering (SERS) substrate with demonstrated signal amplification over one order of magnitude greater than commercially available SERS substrates. Very significantly, the newly developed substrates utilize a simple inexpensive imprinting process on nanoporous gold and are thus amenable for high-volume production.

Polar Liquid Crystals with High Dielectric Anisotropy

Vanderbilt inventors have developed a new class of liquid crystals with high dielectric anisotropy. A new class of liquid crystals containing boron in their structure has been developed with high dielectric anisotropy, which results in low threshold voltages.

Enhanced Cooling of Oil Based Transformers and Other Heat Generating Equipment with NanoParticle Suspensions

Nanometer-sized, low-cost, readily available, particulate nanodiamond is used as an additive to the mineral oil used in electrical power transformers and other oil-cooled electrical equipment to enhance the thermal conductivity [TC] and dielectric properties of the oil without compromising the oil's required electrical insulation, such that failures are suppressed, oil life is greatly extended and load boundaries are elevated. This could extend transformer life and allow increases to transformer MVA ratings.

Biohybrid, Photoelectrochemical Energy Conversion Device Based on Photosystem I Deposited Silicon Electrodes

Summary: Aresearch team at Vanderbilt University have developed a biohybrid, photoelectrochemical energy conversion device with multilayer films of Photosystem I (PSI) deposited on silicon electrodes, which yielded an average photocurrent density of 875 µA/cm2; one of the highest reported photocurrent densities for a film of PSI deposited onto an electrode of any material.

Bright White Light Nanocrystals for LEDs

A research team lead by Professor Sandra Rosenthal at Vanderbilt University has developed nanocrystals (~2 nm diameter) that emit white light with very high quantum efficiency. This technology would be a viable cost effective candidate for commercial solid-state lighting applications, such as Light Emitting Diodes (LEDs). These nanocrystals were originally discovered by the same group in 2005; a recent breakthrough in post-treatment results in improving fluorescent quantum yield up to ~ 45%.

Chemical Sensor Utilizing a Chemically Sensitive Electrode in Combination with Thin Diamond Layers

Vanderbilt researchers have developed a novel solid state chemical sensor using CVD diamond film. The system utilizes polycrystalline diamond technology combined with chemically-sensitive electrode layers to achieve high sensitivity and selectivity for a variety of chemical species.

Porous Silicon Membrane Waveguide Biosensor

Vanderbilt researchers have developed a low-cost, high sensitivity sensor based on a porous silicon (PSi) membrane waveguide. This sensor is designed to be a cost-effective alternative to conventional fiber optic and SPR sensors for both biosensing and chemical sensing applications.

Method of Preparing Vanadium Dioxide Nanoparticles

This technology provides a method for preparing VO2 nanoparticles having controlled size utilizing inverse micelle hydrolysis

System & Method for Direct Fabrication of Micro/Macro Scale Objects in a Vacuum Using Electromagnetic Steering

This new materials processing technology allows metal and ceramic parts to be manufactured in three dimensions by additive deposition of material, either in atmosphere or in a vacuum. The scale is on the order of the powder size and can be as small as one micron. The deposition rate can be orders of magnitude greater than vapor deposition, which is the current vacuum fabrication technology for devices.

Featured Video

Vanderbilt Patent Activity

View Vanderbilt University Patents

CTTC on Twitter