Available Technologies


Medical Imaging

28 available technologies

A Robotic System for Real-time Tumor Manipulation During Image Guided Breast Biopsy

Three types of technologies have been developed for assisting during breast biopsy procedures.

1) Many robotic systems have been developed to improve accuracy of needle insertions. Butthese systems do not compensate for tumor movement during the insertion. Hence multipleinsertions are typically required to successfully sample the tumor.
2) Steerable needle devices have been developed to guide the needle tip towards the tumor.Even though these systems may not require multiple insertions, they cause tissue damageinside the breast during steering of the needle.
3) Finite element methods have been developed to predict and compensate for tumormovement. The disadvantage with this technology is that geometric and mechanicalproperties of the breast are required for finite element analysis. The average computationaltime is approximately half an hour.

We developed a novel technology for guiding clinical breast biopsy. This system positions a tumor inline with the needle during real-time needle insertion procedures. This technology solves the following problems:

- Breast biopsies can be performed without multiple needle insertions
- Expedites breast biopsy procedures
- Does not need geometric or mechanical properties of the breast
- Tissue damage inside the breast is minimized

Near-Infrared Dye with Large Stokes Shift for Simultaneous Multichannel in vivo Molecular Imaging

Fluorescent labels having near-infrared (NIR) emission wavelengths have the ability to penetrate tissue deeper than other emission wavelengths, providing enormous potential for non-invasive imaging applications. However, advancement of optical imaging (particularly NIR imaging) is hindered by the limitation of narrow Stokes shift of most infrared dyes currently available in the market. Vanderbilt researchers have developed a novel NIR dye (4-Sulfonir) for multichannel imaging that enables in vivo imaging of multiple targets due to its large Stokes shift. 4-Sulfonir with its unique large Stokes shift (~150 nm) and wide excitation spectrum could be used in parallel with other NIR dyes for imaging two molecular events simultaneously in one target.

Brain Shift Compensation Using Computer Models

This technology eliminates the need to place cortical fiducial markers during image guided neurosurgery. As an additional and important feature, the technology is able to compensate for brain shift due to deformation of the brain during surgery.

Arbitrary Shape Selective Excitation Summed Spectroscopy (ASSESS)

Vanderbilt researchers have developed a novel single-voxel localization technique for Magnetic Resonance Spectroscopy (MRS), termed ASSESS (Arbitrary Shape Selective Excitation Summed Spectroscopy). ASSESS can measure spectra from regions of arbitrary shape allowing the user to customize the region of interest.

System and Methods of Using Image-guidance for Placement of Cochlear Stimulator Devices, Drug Carrier Devices, or the Like

Vanderbilt inventors have developed and tested a device (C-in) and method that would shift the current invasive, risky surgical procedure of cochlear implantation to a less invasive outpatient procedure.

PosiSeat™: Assured Seating of Threaded Surgical Components

Vanderbilt presents an intraoperative device for taking the guesswork out of whether or not a threaded component is securely affixed to bone. This device is an anchor driver that automatically releases upon proper seating of the anchor on the bone of interest.

MultiUse Multimodal Imaging Chelates

PK11195 is a high-affinity ligand of the peripheral benzodiazepine receptor (PBR). By linking lanthanide chelates to the PK11195 targeting moiety, Vanderbilt researchers have generated a range of PBR-targeted imaging probes capable of visualizing a number of disease states at cellular levels using a variety of imaging modalities (fl uorescence, PET and SPECT, MRI, electron microscopy).

Micro-Mirrored Pyramidal Wells

This technology is a system for 3D imaging of live biological cells fabricated using conventional semiconductor technology that provides simultaneous images from multiple vantage points.

Method to model elasticity parameters (i.e. elastography) of tissue as a complement to imaging

Elastography is the direct imaging of tissue elasticity parameters. The invention is a widely-applicable framework for determining elastic properties of tissue called Modality Independent Elastography (MIE). The technology is an adaptable framework which augments existing technologies (i.e. optical, magnetic resonance, computed tomographic, ultrasound) and creates image distributions of elastic parameters. It does not require any special sequences other than routine anatomical images.

Combined Raman Spectroscopy- Optical Coherence Tomography (RS-OCT)

Vanderbilt researchers have developed an optical system for the differentiation of normal and cancerous skin lesions. The system combines the diagnostic prowess of two separate techniques to provide non-invasive, real-time, in-situ evaluation of lesions.

Image-Guided Navigation System for Endoscopic Eye Surgery

A flexible endoscope for ophthalmic orbital surgery is presented. The endoscope has illuminating fiber, image fiber and a free conduit to deliver purge gas/fluid in addition to instruments such as ablation instruments, coagulating instrument or a medication delivery instrument.

Simultaneous RNA and Gene Expression Profiling Using Mass Spectrometry

This technology allows the simultaneous detection of RNA transcript abundance (as an assay of gene expression) and protein abundance (as an assay of protein expression) from biological samples without RNA isolation, labeling or amplification. Existing technologies allow for very efficient determinations of protein abundance from a wide variety of biological samples. These methods are in widespread use and are based on mass spectrometry technologies. There are no available technologies that allow efficient and quantitative assessment of multiple RNA transcripts without a previous isolation followed by labeling and/or amplification. The most efficient technologies currently available make use of DNA microarrays to profile RNA abundance as a measure of gene expression. While very robust and useful, these technologies are very labor intensive and suffer from a number of technological drawbacks. This technology takes advantage of a number of existing methods and techniques and brings them together in a novel manner that greatly expands the state of the art for gene expression.

Laser Range Scanning for Cortical Surface Registration & Deformation Tracking

This technology is fundamentally a new way to align a patient in an image-guided surgery system (registration) without the use of fiducial markers on the cranium exterior. The system utilizes laser range scanning technology, the natural features on the cortical surface, and the corresponding natural features derived from the patient's preoperative magnetic resonance tomograms. In addition, the technology is amenable to measuring deformation (brain shift) for use within a mathematical model-based strategy for shift compensation.

Featured Video

Vanderbilt Patent Activity

View Vanderbilt University Patents

CTTC on Twitter